
Journal of Neonatal Surgery

ISSN(Online): 2226-0439
Vol. 14, Issue 1s (2025)
https://www.jneonatalsurg.com

pg. 437

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 1s

A Novel Adam Hypertuned Artificial Neural Network Using Autoencoder Network Approach to

Improve Software Defect Prediction Accuracy

S. Thenmozhi1, Dr. PM. Shanthi2

1Research scholar, Department of computer science, J.J. College of Arts and Science (Autonomous), Affiliated to

Bharathidasan University, Pudukkottai - 622422, Tamilnadu, India
2Assistant professor, Department of computer science. J.J. College of Arts and Science (Autonomous), Affiliated to

Bharathidasan University, Pudukkottai - 622422, Tamilnadu, India

00Cite this paper as: S. Thenmozhi, Dr. PM. Shanthi, (2025) A Novel Adam Hypertuned Artificial Neural Network Using

Autoencoder Network Approach to Improve Software Defect Prediction Accuracy. Journal of Neonatal Surgery, 14 (1s),

437-453.

ABSTRACT

Defect prediction is a very active area in the software engineering field. It is crucial to bridge the gap between software

engineering and data mining to ensure the programme's success. Predicting software flaws helps find faults in the code before

testing is done. Cluster analysis, statistical approaches, mixed algorithms, neural network-based metrics, black box testing,

white box testing, and machine learning are only some of the methods used to investigate the software effect area while

trying to forecast defects in software. In order to improve the accuracy of deep learning classifiers for defects forecasting,

this study makes a novel contribution by using feature selection for the first time. This research was conducted with the hope

of enhancing the accuracy with which errors may be predicted in five NASA data sets: CM1, JM1, KC2, KC1, and PC1.Here

initially the data was retrieved and processed using rounded mean regressor interpolation approach. Then for selecting feature

information grain methodology was used. Dimensionality Component Analysis (DCA), Self-Regulating Component

Analysis (SRCA), and Non-Negative Linear Matrix Factorization (NNLMF) were used to extract features from the recovered

data . In order to improve upon previous techniques of defect prediction, we combine the factorization selection approach

with the deep learning-based adam hypertuned ANN using autoencoder method. All of the tests were run in a python

environment. This research shows that, in comparison to the currently used mechanisms, defect prediction accuracy may be

increased by the application of feature selection.

Keywords: Software Defect, deep learning, feature extraction, adam hypertuned ANN using autoencoder network

1. INTRODUCTION

Software has become an important part of modern technology to the point where almost every business needs some kind of

software [1]. But if software bugs are common, the main reason for making it is defeated, and it loses trust and dependability

[2]. ally We live in a time when software is very important. Software that has a lot of bugs hurts its trustworthiness and

dependability [3, 4]. Customers were unhappy with the programme because of this, which hurt the company's reputation [4,

5]. If faults are found early on in the software development process, resources can only be put towards the parts of the

software that need them. As a result, software defect prediction (SDP) is one of the most important parts of the software

industry's growth in making good software. Finding bugs in software early on will save time, money, and other resources for

businesses. A lot of people are interested in machine learning (ML) models lately because they can help predict software

departure [6]. This had to be done so that software goods could be delivered on time and the best use of the resources was

made [7]. But software datasets that aren't fair and have a lot of dimensions have made it hard for ML-based models to work

well [8]. When looking at binary problems [9], accuracy has been found to be a good way to compare models. However, if

there are a lot more instances of one class than another, the accuracy of such a model won't work well. If there are 10 faults

out of 100 cases and 90 instances do not have any defects, the evaluation results will be different when an ML-based model

is learned on data that is not fair. Without a doubt, the findings will favour the middle-class group. In real life [10, 11],

imbalance is a problem that comes up a lot. This method can be used to deal with big datasets that have a lot of traits that

classifiers need to choose from before they can make predictions or put the datasets into groups [12]. This is used to find the

most important factors that can greatly help in accurately predicting software flaws using different machine learning-based

models. Using feature selection methods, you can get rid of the duplicates in a dataset. The classifiers will then get rid of the

dataset's non-independent features [13]. The feature selection method will make it easier to get rid of factors that aren't

needed or are used more than once in datasets that are used to predict software defects [14]. Picking the right features is a

S. Thenmozhi, Dr. PM. Shanthi

pg. 438

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue 1s

big part of predicting software bugs. The way this classifier is used has a big effect on how well predictions are made, so it's

important to use the right feature selection classifier to reduce the number of dimensions. In order to predict software bugs,

this study suggests Dimensionality Component Analysis, Self-Regulating Component Analysis, and Non-Negative Linear

Matrix Factorization. Before the feature extraction methods were used, the information grain-based feature selection was

used to make the dataset less complicated. Finally, Adam's hypertuned ANN with an autoencoder network predictor was

used on the software defect datasets to make predictions about software defects. Using feature selection to lessen the large

dimensionality of the software fault dataset is one of the study's main achievements.

(ii) The uneven cases in the dataset were dealt with using the preprocessing method. (iii) Adam's hypertuned ANN with the

autoencoder network method was used to correctly identify the flaws and predict software defects.

This article subsequent parts are organized as follows. In Section II, we provide relevant prior works; in Section III, we

present the problem statement; in Section IV, we present the implemented proposed approach of software defect detection;

and in Section V, we present the results and discussion . The article came to a conclusion in Section VI.

2. RELATED WORKS

“Machine learning (ML) models have been used by several researchers to address binary classification problems in diverse

domains, such as rainfall prediction [15, 16], sentiment analysis [17–19], network intrusion detection [11, 20–22], and

software defect prediction [1, 2, 4, 23–25]. This research examines many publications pertaining to the Social Development

Paradigm (SDP). The investigation conducted by the authors in reference [26] included a comprehensive examination of

machine learning-based models used to software defect prediction (SDP). The study utilised twelve meticulously curated

datasets sourced from NASA to evaluate the effectiveness of several classifiers. The used algorithms include of Support

Vector Machine (SVM), K-Nearest Neighbour (KNN), Naïve Bayes (NB), Radial Basis Function (RBF), Decision Tree

(DT), Multi-Layer Perceptron (MLP), and Random Forest (RF). The performance criteria used in evaluating the analysed

models include recall, accuracy, receiver operating characteristic (ROC), Matthews correlation coefficient (MCC), and F1-

score. The experimental findings indicate that the RF classifier exhibited superior performance in comparison to other

classifiers, with the SVM model ranking second. In a comparable study, the researchers in [27] used an ensemble

classification model subsequent to using feature selection techniques to mitigate the inclusion of irrelevant characteristics in

the dataset utilised for model evaluation. The suggested model was implemented in a binary dimension, using feature

selection in conjunction with the classifier. Additionally, the model was applied without utilising the feature selection

approach. The NASA datasets were used in conjunction with a range of performance indicators to assess the effectiveness

of the suggested models. The outcomes of the model are contrasted with other cutting-edge used forecasting techniques. The

findings demonstrated significant enhancements on some datasets; nevertheless, the model exhibited suboptimal

performance when confronted with unbalanced class datasets due to inadequate resolution of the underlying problem by the

suggested approach. In this study, the authors of reference [28] put forth six classifiers for Semantic Dependency Parsing

(SDP) approaches. These classifiers use Principal Component Analysis (PCA) as a means of reducing the dimensionality of

the features. The specific algorithms utilised in this study are Holographic Networks, Layered Neural Network, Logistic

Regression (LR), and Discriminant Analysis. The performance parameters included in this study are the Misclassification

Rate, Verification Cost, Predictive Validity, and Achieved Quality. The outcomes of the presented models demonstrated a

perfect accuracy rate of 100%, particularly the model that used Principal Component Analysis (PCA) for reducing

dimensionality, exhibiting no errors. In their study, the authors in reference [4] conducted an empirical evaluation of SDP

models by using several ensemble approaches with boosting capabilities on three publicly available JAVA projects. The

models are assessed using stable performance criteria such as Area Under the Curve (AUC), Balance, and G-Mean. The

resampling techniques were used in the JAVA projects, using four ensemble classifiers. The use of resampling methods

resulted in improved performance of classifiers in comparison to classifiers that did not employ resampling techniques. This

finding demonstrates that the use of resampling techniques has a substantial influence on the performance of ensemble

classifiers. Specifically, as compared to traditional boosting classifiers, the implementation of resampling techniques has led

to significant improvements in the performance of the SDP models. Among the resampling algorithms used, RUSBoost had

superior performance, followed by MSMOTEBoost, while SMOTEBoost demonstrated the least favourable outcomes. In a

separate investigation conducted by [1], a model was proposed that utilises several ensemble learning techniques to forecast

software module defects. The suggested system integrates a combination rule for ensemble models that incorporates both

linear and non-linear approaches. The design and execution of the research used publicly accessible software defect datasets.

The system under consideration shown a notable ability to accurately forecast software problems, yielding consistent and

dependable outcomes across the various datasets used for performance assessment. The prediction at level l, denoted as

Pred(l), was then used in the ensemble classifiers to assess the extent of the findings' comprehensiveness. The findings

indicate that the average relative inaccuracy of the quantity of modules inside a dataset is either less than or equal to a

specified threshold value, denoted as "l". The present research and assessment, using the metric, have substantiated the

efficacy of the suggested approach in accurately predicting software defects. The performance of ensemble approaches

shown improvement in comparison to the single fault prediction method for the prediction of software problems. The primary

S. Thenmozhi, Dr. PM. Shanthi

pg. 439

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue 1s

contribution of the approach is in its ability to rapidly detect software flaws by effectively using testing resources. In their

study, the authors introduced a model for SDP that encompasses four distinct stages: (i) feature selection, (ii) pre-processing,

(iii) classification, and (iv) reflection of outcomes, as documented in reference [23]. The use of a feature selection model was

employed to exclude unnecessary features from the dataset prior to the application of ensemble learning classifiers. The

authors used the NASA MDP datasets that had been cleansed for the purpose of implementing the suggested model. Multiple

performance criteria, including as accuracy, F1-score, Matthews correlation coefficient (MCC), and receiver operating

characteristic (ROC), are used to evaluate the model. The model underwent testing on each dataset in order to compare and

determine the greatest scores among the six datasets. A comparative analysis was conducted between the suggested model

and ten other supervised classifiers. The search techniques and outcomes of the proposed system demonstrated superior

performance in comparison to all other classifier approaches. In a scholarly investigation conducted by the authors [29], the

use of Support Vector Machines (SVM) was presented as a means to forecast software errors. To develop the model, NASA

datasets were employed. The suggested framework was evaluated in comparison to various models, including logistic

regression (LR), k-nearest neighbours (K-NN), random forest (RF), naive Bayes (NB), radial basis function (RBF), and

multilayer perceptron (MLP). The findings indicate that the suggested technique exhibited superior performance compared

to certain categorization methods used for performance evaluation. The authors in reference [30] have shown the significance

of feature selection in SDP systems by demonstrating that some parameters or features possess more relevance compared to

others. The artificial neural network (ANN) is equipped with feature selection techniques to facilitate the deployment of the

framework. The chosen characteristics are used in order to make predictions on the SDP via the implementation of ANN

classifiers. The performance of the suggested technique was evaluated using the Gaussian Kernel Support Vector Machine

(SVM) and the JM1 NASA dataset. Based on the outcomes obtained from the suggested model, it can be concluded that the

Support Vector Machine (SVM) exhibited superior performance compared to the other model in the classification of defects

in the twofold scenario. The authors in reference [31] used a hybrid approach that combined a Genetic Algorithm (GA) with

a Deep Neural Network (DNN) for solving the Semi-Definite Programming (SDP) problem. This approach was evaluated

using many datasets sourced from the PROMISE repository. The Hybrid Genetic Algorithm (GA) is used for the purpose of

feature selection in order to identify the most effective characteristics for the model. Additionally, the Deep Neural Network

(DNN) is utilised to carry out the prediction of the system. The outcomes of the suggested model shown superior performance

compared to other methodologies used for evaluating the model's efficacy. Based on previous studies, it has been shown that

the presence of unbalanced software data might impede the effectiveness of models, resulting in inaccurate interpretations

of outcomes. Additionally, datasets with a large number of features can diminish the efficiency of ensemble methods. Hence,

this research presents a hybrid model that encompasses feature selection, data normalizations, and XGBoost algorithm for

the purpose of classifying software products and predicting the presence of flaws inside them.

3. PROPOSED WORK

This work examines the efficacy of the proposed learning classifiers in the context of software defect prediction, using

benchmark datasets from NASA. Each dataset has many characteristics in addition to a predefined output class. The output

or target class is determined by prediction using other accessible features. The characteristic that is being predicted is referred

to as the dependent attribute, whereas the other attributes utilized to forecast the dependent attribute are referred to as

independent attributes. The datasets used for this research consist of a dependent characteristic that is characterized by values

of either "Y" or "N". The symbol "Y" denotes the presence of defects in a particular software instance or module, whereas

the symbol "N" indicates the absence of defects. This study use a total of five datasets sourced from NASA for experimental

purposes. The datasets include CM1, JM1, KC1, KC2, and PC1, as shown in Table I. Each dataset that has been chosen

reflects a software system developed by NASA. These datasets consist of several metrics that are strongly associated with

software quality. The suggested method architecture was illustrated in figure 1.

S. Thenmozhi, Dr. PM. Shanthi

pg. 440

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue 1s

Figure 1 Schematic representation of the suggested methodology

Table 1 Description of the dataset

Dataset Attributes Modules Defective Non-

 Defective

 Defective

 (\%)

CM1 38 327 42 285 12.8

JM1 22 7,720 1,612 6,108 20.8

KC1 22 1,162 294 868 25.3

KC2 40 194 36 158 18.5

PC1 38 679 55 624 8.1

3.1 Data preprocessing

In order to get suitable data for the proposed Software Development Process (SDP) framework, many pre-processing

processes were performed on the dataset provided by NASA. The below procedures are undertaken to modify the dataset

used for the purpose of this investigation:

(i) The elimination of duplicated instances refers to the identification and removal of software modules that possess identical

class labels and software metric values, particularly in cases when these instances are associated with faulty labels. In the

context of a practical issue, this scenario is very conceivable. Unfortunately, machine learners may have severe consequences

when encountering multiple instances, which may lead to overoptimistic results if these instances are correctly categorised

as part of the test data. Misclassifying these presentations as part of the test data might lead to excessively negative outcomes.

S. Thenmozhi, Dr. PM. Shanthi

pg. 441

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue 1s

Moreover, this phenomenon might lead to a significant increase in the duration of the training process, hence impeding the

enhancement of the models and classifiers' performance. Therefore, it is essential to eliminate duplicate instances inside the

datasets.

(ii) Relocation of Misplaced Labels: It is common to encounter several instance values associated with different software

metrics. Multiple missing values might occur for a given occurrence, particularly when data collection was conducted in a

casual manner, due to many factors. It has become more common for instances to be unable to meet the input requirements

of the proposed model due to the presence of missing data that need to be processed. In the present research, in the event of

any missing value, it is deemed appropriate to substitute such value with the mean of the corresponding measure. For

example, let us consider a scenario where both 𝑛𝑡99 and 𝑛𝑡100are absent. In this case, we have a metric mt and its

corresponding explanations {𝑛𝑡1, … . . , 𝑛𝑡100}. The two missing numbers may be substituted by using Equation (1).

𝑛𝑡99 = 𝑛𝑡100 =
1

98
∑  98
𝑖=1 𝑛𝑡 (1)

(iii) Data Standardization: The values of different software metrics exhibit significant variations in magnitude, necessitating

the use of data normalisation techniques to standardise these metrics. The research used the widely utilised min-max

normalisation approach to convert all values and normalise the data within the range [0,1].

The metric x exhibits a one-to-one relationship with the maximum and minimum values, which are represented as max(y)

and min(y) respectively. The computation of the value 𝑥̃𝑖for each value of 𝑦𝑖of metric y is possible.

𝑦𝑖̃ =
𝑦𝑖−min(𝑦)

max(𝑦)−min(𝑦)
 (2)

Subsequently, the raw data undergoes preprocessing. Data visualization refers to the systematic procedure of generating a

visual depiction of data with the objective of enhancing comprehension of its underlying information. The evaluation of

quality within visualization methods lacks a well-defined mathematical standard. The data is presented in a visually

accessible style that highlights distinct bits of information.

3.2 Feature selection

The entropy-based selection approach known as Information Gain (IG) includes the computation of gain (y, A) from the

output data that is categorised by feature A. The representation of the Information Gain (y,A) is as follows,

gain⁡(𝑦, 𝐴) = entropy⁡(𝑦) − Σ𝐶∈vals⁡(𝐴)
𝑦𝑐

𝑦
entropy⁡(𝑦𝑐) (3)

The variable (A) represents the range of potential values for characteristic A, with Yc denoting the subset of y in which A

has a cumulative total of c. Moreover, Eq. (3) governs the calculation of the overall entropy of variable y, which is afterwards

used for the purpose of data segregation, specifically with respect to feature A.

The determination of the threshold value may be done independently or by using a predetermined value of 0.05. The final

feature's threshold value was obtained by calculating the average of each data frequency.

The procedure for assessing the variety of data groups entails the reduction of information value by means of calculating the

average of associations, followed by the summation of the obtained outcomes. The technique used in this context is often

referred to as standard deviation, which quantifies the extent to which the measured data deviates from the mean value. The

present research utilises the data group as a measure of the informational significance of each characteristic inside a given

dataset, as determined by the use of Equation (4).

𝑆 = √𝑑 ∑  𝑑
𝑖=1  𝑥𝑖

2−(∑  𝑑
𝑖=1  𝑦1)

2

𝑛(𝑛−1)
 (4)

In the given context, S represents the standard deviation, x denotes the average value of the IG (Information Gain), xi signifies

the rate of x to i, and n represents the total number of features used in the dataset.

3.3 Feature extraction

The total number of features may be specified as an input for three distinct feature selection methods, which are outlined

below,

2.3.1 DCA

By using the DCA technique on 𝑋aug , the DCs (Dynamic Connectivities) may be derived using the usual DCA process. The

dimension of the resulting DC is1 × (𝑁input + 𝑁class). To decrease the input dimension to𝑁feature < 𝑁input , we choose for

𝑁feature discriminant components (DCs) that effectively capture the 𝑁feature biggest variances. Within the context of this

discourse, the variable W is defined in the following manner.

S. Thenmozhi, Dr. PM. Shanthi

pg. 442

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue 1s

𝑊Sort = [𝐷𝐶1
𝑇 𝐷𝐶2

𝑇 ⋯ 𝐷𝐶𝑁feature

𝑇]

= [
𝑊input

𝑊class

]
 (5)

In this context, the superscript T denotes the transposition operation applied to a matrix. The size of 𝐷𝐶𝑖 is

1 × (𝑁input + 𝑁class), whereas the dimension of 𝑊sort is (𝑁input + 𝑁class) × 𝑁feature . The terms 𝑊input and 𝑊class refer to the

input and the class, respectively, within the context of the enhanced input.

The modified data on the feature space may be obtained by multiplying the 𝑊sort with the augmented data 𝑋aug

𝑋feature = [𝑋 𝐶(𝑋)] × [
𝑊input

𝑊class

]

= 𝑋 ×𝑊input + 𝐶(𝑋) ×𝑊class

 (6)

The equation mentioned above cannot be applied to data instances with unknown class labels, since it relies on the presence

of the class label C(X). Based on the observation that the factors of matrix W in the k-th column and j-th row (where k ranges

from 1 to 𝑁input and j ranges from 1 to𝑁feature) are much lower compared to the other factors of W, we may derive the

following approximate equation for the calculation of 𝑋feature .

𝑋feature ≅ 𝑋 ×𝑊input (7)

The aforementioned equation has the capability to be used for any variable X, regardless of its unknown classification, in

order to get the matching value inside the feature space.

2.3.2 SRCA

The SRCA method is a computer methodology used for nonlinear feature extraction. It involves subdividing a signal into its

statistically independent components, often known as ICs. The study employs SRCA as a method for lowering the

dimensionality of the original features and extracting the essential independent characteristics from the provided signal. The

ICs of a dataset are determined by the execution of the subsequent mathematical calculation.

1. Let us consider a scenario where there are n linear vectors that are obtained from a combination of 𝑁1, 𝑁2, … , 𝑁𝑘,

each of which represents k observations. Likewise, the source vector x is constructed using the elements

𝑥1, 𝑥2, … , 𝑥𝑘. The weighted matrix, designated as W, is represented by components 𝑎𝑖,𝑗. The mixing model may be

expressed as follows.

𝑁 = 𝑊𝑥 (8)

The model may also be written with the segments of the matrix W represented by the symbols 𝑎𝑗.

𝑁 = ∑  𝑛
𝑖=1 𝑎𝑖𝑥𝑖 (9)

SRCA is the name of the factual model represented by Eq. (9). SRCA's status as a generative model is therefore confirmed.

This means that it shows how the things that viewers see are made via a process of combining various elements of 𝑥𝑖.

2. Then, by evaluating the matrix W, we can obtain the IC defined by its inverse, say A.

𝑁 = 𝐴𝑥 (10)

where W and A are complementary opposites of one another.

In this study, the characteristics are retrieved in order to carry out the SRCA calculations.

2.3.3 NNLMF

In the context of a vector 𝑣‾ containing N high-dimensional points 𝑧1, 𝑧2, ⋯ 𝑧𝑛, the calculation of the Euclidean distances

between any two points 𝑧𝑖 and 𝑧𝑗 inside the vector 𝑣‾ is used to derive a conditional probability 𝑃𝑗∣𝑖. This conditional

probability serves as a measure of resemblance between the point 𝑧𝑖 and the point 𝑧𝑗. To clarify, the conditional probability

𝑃𝑗∣𝑖denotes the chance that the point 𝑧𝑖 would choose 𝑧𝑗 as its neighbour, assuming that the probability density of the features

follows a normal distribution (Gaussian) and is centred at the point 𝑧𝑖. Therefore, the conditional probability exhibits an

increase when considering neighbouring data points, however for data points that are far apart, 𝑃𝑗∣𝑖becomes almost negligible.

Mathematically, the conditional probability 𝑝𝑗∣𝑖 may be denoted as such,

𝑝𝑗∣𝑖 =
exp⁡(−∥∥𝑧𝑖−𝑧𝑗∥∥2

/2𝜎𝑖
2)

∑  𝑘≠𝑖  exp⁡(−∥∥𝑧𝑖−𝑧𝑗∥∥
2
/2𝜎𝑖

2)
 (11)

where 𝜎𝑖 is the mean of the Gaussian distribution centred at the position𝑥𝑖.

S. Thenmozhi, Dr. PM. Shanthi

pg. 443

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue 1s

The conditional probability of a point being next to itself is 0 since the method focuses on representing pairwise similarities

𝑃𝑖∣𝑖 = 0.

A conditional probability, 𝑞𝑗∣𝑖 may be derived to characterise the similarities between the map feature points 𝑦𝑖 and 𝑦𝑗, which

are the low-dimensional analogues of the high-dimensional 𝑧𝑖 and 𝑧𝑗, respectively.

𝑞𝑗∣𝑖 =
exp⁡(−∥∥𝑧𝑖−𝑧𝑗∥∥2

)

∑  𝑘≠𝑖  exp⁡(−∥∥𝑧𝑖−𝑧𝑗∥∥
2
)
 (12)

Since this method is solely interested in simulating pairwise similarities, the conditional probability 𝑞𝑖∣𝑖is similarly zero

(𝑞𝑖∣𝑖=0).

In order to obtain a low-dimensional representation of the data that minimises the discrepancies between⁡𝑝𝑗∣𝑖 and 𝑞𝑗∣𝑖, the

dimensionality reduction mapping is performed. The gradient descent technique is used frequently in NNLMF to achieve

this for a certain cost function C, such that

𝐶 = ∑  𝑖 𝐾𝐿(𝑃𝑖 ∥ 𝑄𝑖) = ∑  𝑖 ∑  𝑗 𝑝𝑗∣𝑖log⁡
𝑝𝑖∣𝑖

𝑞𝑖∣𝑖
 (13)

The Kullback-Leibler divergence function of 𝑃𝑖 ∥ 𝑄𝑖is denoted by 𝐾𝐿(𝑃𝑖 ∥ 𝑄𝑖). The Kullback-Leibler divergence, denoted

as 𝐾𝐿(𝑃𝑖 ∥ 𝑄𝑖), is the distance between two discrete probability distributions 𝑃𝑖 and 𝑄𝑖 , and it is defined as,

𝐾𝐿(𝑃𝑖 ∥ 𝑄𝑖) = −∑  𝑥∈𝑋 𝑃𝑖(𝑧)log⁡ (
𝑄𝑖(𝑧)

𝑃𝑖(𝑧)
) (14)

This is equivalent to

𝐾𝐿(𝑃𝑖 ∥ 𝑄𝑖) = ∑  𝑥∈𝑋 𝑃𝑖(𝑧)log⁡ (
𝑃𝑖(𝑧)

𝑄𝑖(𝑧)
) (15)

The expectation of the logarithmic difference between 𝑃𝑖 and 𝑄𝑖is given by Equation (5) above. Any random continuous

variable x in 𝑃𝑖 and 𝑄𝑖may be treated in the same way.

𝐾𝐿(𝑃𝑖 ∥ 𝑄𝑖) = ∫  
∞

−∞
𝑝𝑗∣𝑖(𝑧)log⁡ (

𝑝𝑗∣𝑖(𝑧)

𝑞𝑗∣𝑖(𝑧)
) 𝑑𝑧 (16)

where 𝑝𝑗∣𝑖 and 𝑞𝑗∣𝑖are the distributions of likelihoods of 𝑃𝑖 and 𝑄𝑖 .

The Kullback-Leibler divergence function may be rewritten as when 𝑃𝑖 and 𝑄𝑖are evaluated over continuous sets X and P.

𝐾𝐿(𝑃𝑖 ∥ 𝑄𝑖) = ∫  
𝑧
log⁡ (

𝑑𝑃𝑖

𝑑𝑄𝑖
) 𝑑𝑃𝑖 (17)

where
𝑑𝑃𝑖

𝑑𝑄𝑖
 in (7) is a derivative of Radon and Nikolayevich Nikodym of 𝑃𝑖 with respect to 𝑄𝑖 .

By using the chain rule for factorization, we can rewrite (17) as

𝐾𝐿(𝑃𝑖 ∥ 𝑄𝑖) = ∫  
𝑋
log⁡ (

𝑑𝑃𝑖

𝑑𝑄𝑖
)
𝑑𝑃𝑖

𝑑𝑄𝑖
𝑑𝑄𝑖 (18)

It is commonly agreed that the entropy of 𝑃𝑖 with respect to 𝑄𝑖is given by the preceding equation.

If we have two absolutely continuous probability densities 𝑝𝑗∣𝑖and 𝑞𝑗∣𝑖such that𝑝𝑗∣𝑖 =
𝑑𝑃𝑖

𝑑𝜇
 and 𝑞𝑗∣𝑖 =

𝑑𝑄𝑖

𝑑𝜇
, then the Kullback-

Leibler divergence from 𝑄𝑖 to 𝑃𝑖is given by for every measure on the set z.

𝐾𝐿(𝑃𝑖 ∥ 𝑄𝑖) = ∫  
𝑧
log⁡ (

𝑝𝑗∣𝑖

𝑞𝑗∣𝑖
) 𝑑𝜇 (19)

Recursively using a gradient descent algorithm, the following form is used to minimise the cost function in (19):

𝛿𝐶

𝛿𝑦𝑖
= 2∑  

𝑗

(𝑝𝑗∣𝑖 − 𝑞𝑗∣𝑖 + 𝑝𝑖∣𝑗 − 𝑞𝑖∣𝑗)(𝑧𝑖 − 𝑧𝑗)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(20)

𝑧𝑖 and 𝑧𝑗 are located at different coordinates on a map.

In order to update the map's coordinates at each iteration, the factorised gradient is added to an exponentially decaying sum

of prior gradients. The specified formula controls this update

𝑧𝑡 = 𝑧(𝑡−1) + 𝛽
𝛿𝐶

𝛿𝑦𝑖
+ 𝛼(𝑡)(𝑧(𝑡−1) − 𝑧(𝑡−2))⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(21)

S. Thenmozhi, Dr. PM. Shanthi

pg. 444

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue 1s

where 𝑧𝑡 represents the gradient value at iteration t is denoted as β, the learning rate is represented by α, and α(t) is a

substantial momentum factor that is included into the gradient to enhance the identification of local minima.

It is crucial to note that the computational complexity of Non-Negative Matrix Factorization is of the order O(N^2).

Nevertheless, the application of the cost function (Equation (3)) of NNLMF is constrained due to its quadratic scaling with

respect to the number of objects N. Consequently, it is only suitable for datasets containing a small number of input objects,

typically in the range of a few thousand. As the size of datasets increases, it is anticipated that the learning process would

experience a decrease in speed, while the memory needs will see an increase. Due to recent advancements in high-end

computer technology and its increased affordability, the execution of NNLMF on extensive datasets may now be

accomplished within a matter of minutes.

d. Defect prediction

The features obtained from the three different methodologies are separately given as a input to this optimized classifier. The

current study is centred on the proposition of an adam hypertuned ANN with an autoencoder. The outputs of the routes are

combined and then fed into another pathway, which utilises a distinct set of network layers, in order to get the ultimate

output.

The use of autoencoders in the hyperparameter tuning of ANNs is grounded on the widespread adoption of ANNs as a

prominent architecture for data processing. Typically, this neural network model takes into account the characteristics derived

from the dataset. The proposed architecture utilises a dataset containing features denoted as𝑓𝑘(𝑘 = 1,2,3,4……), where k

represents the index of the network layer.

Every layer consists of a set of neurons and an activation function. The characteristics are convolved using several network

layers, referred to as convolutional pathways, and the resulting output of these convolutional routes is then concatenated to

get the final resultant output.

A network consisting of several layers, with a certain number of layers denoted as "l", and an encoder function 𝜎𝑙

Step 1: To ascertain the output of the Hidden layer, it is necessary to determine its corresponding values hl =
𝜎𝑙(𝑊𝑙

𝑇ℎ𝑙−1 + b𝑙) and the network ẑ = h𝑙

Step 2: Compute the gradient 𝛿 =
∂𝜀(𝑧𝑖𝑧𝑖̂)

∂𝑦

 for i ⟵ 𝑙 to 0 do

Regarding the computation of the current layer gradient:

∂𝜀(𝑧,𝑧̂)

∂𝑊𝑙
=

∂𝜀(𝑧𝑖𝑧𝑖̃)

∂ℎ1

∂ℎ1

∂𝑊1
= 𝛿

∂ℎ1

∂𝑊1

∂𝜀(𝑧,𝑧̂)

∂𝑏𝑙
=

∂𝜀(𝑧𝑖(𝑧𝑖̃)

∂ℎ1

∂ℎ1

∂𝑏1
= 𝛿

∂ℎ1

∂𝑏1

 (22)

Apply gradient descent using
∂𝜀(𝑧,𝑧̃)

∂𝑤𝑙
=

∂𝜀(𝑧,𝑧̃)

∂𝑏𝑙

Step 3: The gradient is propagated backwards to the lowest layer.

𝛿 ⟵
∂𝜀(𝑧𝑖𝑧𝑖̃)

∂ℎ1

∂ℎ1

∂ℎ𝑙−1
= 𝛿

∂ℎ1

∂ℎ𝑙−1
 (23)

Step 4: In the above experimental setup, the hyperparameters of the model A are fine-tuned for each batch of zi, with the

corresponding target variable yi.

𝑧𝑖̂ = 𝑍(𝜃, 𝑥);

𝜃 = 𝜃 − 𝜂 ⋅
1

𝑀
∑  𝑀
𝑖=1  

∂𝜀(𝑧𝑖𝑧𝑖̂)

∂𝜃

 (24)

Table 2 Hyperparameters of the suggested framework

Hyperparameters

“Number of layers 16

Activation function ReLU

S. Thenmozhi, Dr. PM. Shanthi

pg. 445

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue 1s

Optimizer Adam

Batch size 32,64,128

Learning rate 0.00010

Loss function Mean_squared_error”

The Adam divisive algorithm is a well-known adaptive learning rate optimisation approach. The optimisation technique

under consideration was especially devised for the purpose of enhancing deep learning methodologies. The algorithm's main

use lies in its capacity to ascertain personalised adaptive learning rates for a diverse array of factors. The nomenclature of

the method is derived from its procedure of adaptive moment estimation. In a deep neural network, the learning rate for each

weight is improved separately by using first- and second-moment gradient estimations. The concepts of mean and variance

may be seen as the first and second moments, respectively. The Adam optimisation approach employs exponentially

weighted moving averages to estimate the moments inside each batch throughout each iteration. The selection rule for the

divisive parameter value of the Adam optimizer may be used to elucidate certain mathematical calculations. This rule is

outlined as follows:

𝐸 = {𝑅1, 𝑅2, 𝑅3, … . , 𝑅𝑛} (25)

The tuning rule is defined as follows

𝑉𝑗(𝐸𝑖) = {
𝑧𝑗,𝑖 (1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑛)

(1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑛)
 (26)

The last stage of the procedure is modifying the learning rate for each parameter by using moving averages. To determine

the weighted value update, we may use Equation (27).

𝑈𝑡 = 𝑈𝑡−1 − 𝛼
𝑁𝑡̅̅̅̅

√𝑈𝑡̂+𝜖
 (27)

The default value for α, denoted as the learning rate or step size, is set to 10^(-8) in the context where t represents the number

of iterations and w represents the tuned value weight.

Equation (28) illustrates the methodology for selecting the hyper-tuned value attributes.

𝑌𝑛(𝑒
𝑗Ω) = ∑  ∞

𝑚=−∞ 𝑌[𝑁]𝑈[𝑛 − 𝑚]𝑒−𝑗Ωm (28)

The overall temporal complexity of the proposed framework is evaluated by analysing several factors, such as the number

of layers, the depth of each layer, and the spatial extent of the output map. This evaluation is expressed mathematically in

Equation 29.

O(∑  𝑑
𝑘=1  𝑛𝑘−1 ⋅ 𝑠𝑘

2 ⋅ 𝑛𝑘 ⋅ 𝑚𝑘
2) (29)

where

“𝑘 = index of a layer

𝑑 = depth of the layer

𝑛𝑘 = number of parameters in the kth layer

𝑛𝑘−1 = number of input channels of the 𝑘th layer

𝑠𝑘 = length / spatial size of the tuned value

𝑚𝑘 = spatial size of the output map”

The training time for each input is typically three times longer than the testing time, as measured for both forward and

backward propagation. During the forward propagation phase, the performance of the proposed framework is evaluated by

the computation of the loss using the cross-entropy method. On the other hand, the backpropagation phase involves the

update of kernels and weights.

The updating of kernels and weights is performed based on the loss value. Hence, the procedure is used to iterate through

the trainable parameters (kernels and weights) in order to minimise the loss. The process involves the use of a gradient loss

function, which guides the model in the direction of the steepest rise rate. Additionally, various hyperparameters, such as the

S. Thenmozhi, Dr. PM. Shanthi

pg. 446

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue 1s

Adam optimizer, are selected prior to commencing the actual training process. Additionally, it is advised to use fixed input

and output layers in the proposed network, with an emphasis on using Fully Convolutional Networks (FCN) instead of Fully

Connected (FC) layers.

To predict the probability of defect,

𝑗𝑡 = 𝜎(𝐾ℎ𝑡,𝐵𝑖−𝑀𝐷𝑆𝑃𝑁 + 𝑏)

𝐻𝑡 = ReLU⁡(𝐽ℎ𝑡,𝐵𝑖−𝑀𝐷𝑆𝑃𝑁𝑊
+ 𝑏̃)

𝐶𝑡 = 1 − 𝐺𝑡
𝑂𝑡 = 𝑘𝑡𝐺𝑡 + ℎ𝑡,𝐵𝑖−𝑀𝐷𝑆𝑃𝑁𝑊

𝐶𝑡

 (30)

The weight matrices G, as well as the bias vectors b and 𝑏̃,, are shown. The activation function is often represented by the

acronym "ReLU." The degree of output transformation is regulated by the encoder and decoder layers of 𝐺𝑡. The resultant

vector is represented by the symbol 𝑂𝑡. The software problem may now be accurately identified.

4. PERFORMANCE ANALYSIS

This study utilises publicly accessible benchmark datasets from the NASA promise repository to examine the enhancement

of defect prediction accuracy with the use of feature selection.

The objective of this section is to evaluate the effectiveness of various categorization approaches. The sample input and the

data visualization process was done that was illuystrated in figure 2 and 3

Figure 2 Sample data input from NASA dataset

Figure 3 Process of data visualization

S. Thenmozhi, Dr. PM. Shanthi

pg. 447

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue 1s

Figure 4 Classified output

Depend upon the features selected the defect module was classified by using the suggested methodology as depicted in figure

4.

The performance of the system is assessed and appraised using a range of metrics derived from the confusion matrix. A

confusion matrix is composed of the following parameters:

A true positive (TP) refers to instances that are both truly positive and correctly labelled as positive.

False positives (FPs) refer to instances that are labelled as positive, although being genuinely negative.

False negatives (FN) refer to instances that are really positive but are incorrectly labelled as negative.

True Negative (TN) refers to events that are really negative and are correctly classed as negative.

The evaluation of classification algorithms is conducted using the following measures: The evaluation metrics often used in

information retrieval and learning algorithm tasks include precision, recall, F-measure, and accuracy.

Precision may be defined as the proportion of True Positive modules in relation to the total number of modules that are

categorised as positive.

Precision =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
 (31)

Recall may be defined as the proportion of True Positive modules in relation to the overall number of modules that are really

positive.

S. Thenmozhi, Dr. PM. Shanthi

pg. 448

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue 1s

 Re call =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (32)

F-measure provides the average of Precision & Recall .

F-measure =
 Precision ∗ Recall ∗2

(Precision + Recall)
 (33)

Accuracy refers to the degree to which a forecast aligns with the actual outcome, reflecting the level of precision in the

prediction. .

 Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (34)

Figure 5 .CM1 dataset Classification report

Figure 6 .JM1 dataset Classification report

Figure 7 KC1 dataset Classification report

S. Thenmozhi, Dr. PM. Shanthi

pg. 449

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue 1s

Figure 8 KC2 dataset Classification report

Figure 9 PC1 dataset Classification report

Figure 10 Performance analysis of the suggested methodology

The classification performance outcome ratio of the suggested methodology over 5 different datasets was demonstrated in

figure 5-10

Table 3: CM1 dataset comparative performance analysis

Methodology Precision Recall F-

measure

Accuracy

LM 0.9110 0.91130 0.9113 91.13150

S. Thenmozhi, Dr. PM. Shanthi

pg. 450

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue 1s

BFG 0.8831 0.8777 0.880400 88.07340

CG 0.8634 0.9083 0.8852 88.22630

Proposed 78 81 80 81

Table 3 presents the findings obtained from the CM1 dataset. The results indicate that the suggested approach achieved a

comparable performance to existing training methods, as shown by an Accuracy score of 81%.

Table 4: JM1 dataset comparative performance analysis

Methodology Precision Recall F-

measure

Accuracy

LM 0.79980 0.8056 0.80270 80.1943

BFG 0.79080 0.8132 0.80180 79.9028

CG 0.80220 0.7929 0.79750 79.8705

Proposed 0.78 0.810 0.79 0.81

Table 4 presents the findings obtained from the analysis of the JM1 dataset. The results indicate that the suggested approach

achieved a comparable performance to existing training methods, as shown by an Accuracy score of 81%.

Table 5: KC1 dataset comparative performance analysis

Methodology Precision Recall F-measure Accuracy

LM 0.80430 0.8029 0.80360 80.37870

BFG 0.78010 0.7909 0.78550 78.3993

CG 0.7873 0.7771 0.7822 78.3563

Proposed 0.81 0.82 0.81 0.82

The outcomes for the KC1 dataset are shown in Tab 5. With an Accuracy score of 82%, it is clear that the suggested technique

performed similarly to previous training methods.

Table 6: KC2 dataset comparative performance analysis

Methodology Precision Recall F-measure Accuracy

LM 0.94330 0.94330 0.9433 94.3299

BFG 0.8670 0.907200 0.8866 88.40210

CG 0.828100 0.8196 0.8238 82.4742

Proposed 0.810 0.82 0.81 0.82

The KC2 dataset's final findings are shown in Tab 6. With an Accuracy score of 82%, it is clear that the suggested technique

performed similarly to previous training methods.

Table 7: PC1 dataset comparative performance analysis

Methodology Precision Recall F-measure Accuracy

LM 0.93810 0.93810 0.93810 93.8144

BFG 0.93230 0.93230 0.93230 93.2253

S. Thenmozhi, Dr. PM. Shanthi

pg. 451

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue 1s

CG 0.93230 0.93230 0.93230 93.2253

Proposed 90 91 91 91

Table 7 presents the findings pertaining to the PC1 dataset. The results indicate that the suggested approach achieved a

comparable performance to existing training methods, as shown by an Accuracy score of 91%.

Table 8: Evaluation of the suggested method's accuracy in comparison to existing classification strategies [36]

Datas

et

MLP NB SVM RBF kStar kNN PART OneR RF DT Propos

ed

CM1 86.734

7

82.653

10

90.816

30

90.816

30

77.551

0

77.551

0

90.816

3

85.7143

00

89.795

9

77.551

00

81

JM1 80.354

10

79.835

90

79.188

30

80.397

2

75.993

1

73.963

70

79.490

50

77.1580

90

80.181

30

79.101

90

81

KC1 77.363

9

74.212

0

75.358

20

78.796

6

72.206

3

69.341 76.504

3

73.3524

0

77.937 75.644

7

82

KC2 82.758

60

81.034

50

82.758

60

77.586

20

75.862

10

75.862

10

79.310

30

82.7586

0

77.586

20

75.862

10

82

PC1 96.568

60

89.705

90

95.098

0

94.607

80

86.274

50

92.647

10

93.137

30

94.6078

0

96.078

40

93.137

30

91

Based on the findings shown in Table 8, the proposed approach demonstrates superior performance by achieving a much

higher level of efficiency compared to other currently used mechanisms”. GAK385YA51

5. CONCLUSION

The present work introduces a novel model for the anticipation of software errors that are likely to occur inside software

modules. The timely identification of software module defects may significantly mitigate the expenses associated with the

software development life cycle. The feature selection method in the proposed system involves the use of Dimensionality

Component Analysis, Self-Regulating Component Analysis, and Non-Negative Linear Matrix Factorization techniques.

These techniques are employed to identify and discard unnecessary characteristics that do not contribute significantly to the

classification process of the model. The use of data normalization was employed in order to mitigate the issue of excessive

dimensionality within the datasets utilised, hence enhancing the performance of the suggested model. Adam used a hyper-

tuned artificial neural network (ANN) that employed an autoencoder network to forecast the software metrics module using

four datasets provided by NASA. The evaluation of the model's performance on the five datasets revealed that the adam

hypertuned artificial neural network (ANN), which used an autoencoder network with Non-Negative Linear Matrix

Factorization for feature selection, had superior results specifically on the PC1 dataset. The findings of the proposed

framework demonstrate that the inclusion of feature selection significantly enhances the performance of the prediction model

in comparison to the model that lacks feature selection. However, it is important for future research to continue optimising

different classifiers by using a comprehensive range of features. This will allow for a wider selection of variations to be

considered for machine learning-based models. The use of Deep learning models using feature selection techniques is

expected to enhance the accuracy of software module fault classification..

REFERENCES

[1] Rathore, S.S., Kumar, S.: Towards an ensemble based system for predicting the number of software faults.

Expert Syst. Appl. 82, 357–382 (2017)

[2] Laradji, I.H., Alshayeb, M., Ghouti, L.: Software defect prediction using ensemble learning on selected

features. Inf. Softw. Technol. 58, 388–402 (2015)

[3] Abisoye, O.A., Akanji, O.S., Abisoye, B.O., Awotunde, J.: Slow hypertext transfer protocol mitigation model

in software defined networks. In: 2020 International Conference on Data Analytics for Business and Industry:

Way Towards a Sustainable Economy, ICDABI 2020, 9325601 (2020)

[4] Malhotra, R., Jain, J.: Handling imbalanced data using ensemble learning in software defect prediction. In: 2020

S. Thenmozhi, Dr. PM. Shanthi

pg. 452

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue 1s

10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), pp. 300–304.

IEEE (2020)

[5] Awotunde, J.B., Ayo, F.E., Ogundokun, R.O., Matiluko, O.E., Adeniyi, E.A.: Investigating the roles of effective

communication among stakeholders in collaborative software development projects. Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

2020, 12254 LNCS, pp. 311–319 (2020)

[6] Awotunde, J.B., Folorunso, S.O., Bhoi, A.K., Adebayo, P.O., Ijaz, M.F.: Disease diagnosis system for IoT-

based wearable body sensors with machine learning algorithm. Intelligent Systems Reference Library

2021(209), 201–222 (2021)

[7] Awotunde, J.B., Misra, S.: Feature extraction and artificial intelligence-based intrusion detection model for a

secure internet of things networks. Lecture Notes Data Eng. .ications Technol. 2022(109), 21–44 (2022)

[8] Behera, R.K., Shukla, S., Rath, S.K., Misra, S.: Software reliability assessment using machine learning

technique. In: Gervasi, O., et al. (eds.) Computational Science and Its Applications – ICCSA 2018: 18th

International Conference, Melbourne, VIC, Australia, July 2-5, 2018, Proceedings, Part V, pp. 403–411.

Springer International Publishing, Cham (2018). https:// doi.org/10.1007/978-3-319-95174-4_32

[9] Chicco, D., Jurman, G.: The advantages of the Matthews correlation coefficient (MCC) over F1 score and

accuracy in binary classification evaluation. BMC Genomics 21(1), 1–13 (2020)

[10] Shukla, S., Behera, R.K., Misra, S., Rath, S.K.: Software reliability assessment using deep learning technique.

In: Chakraverty, S., Goel, A., Misra, S. (eds.) Towards Extensible and Adaptable Methods in Computing, pp.

57–68. Springer, Singapore (2018). https://doi.org/10. 1007/978-981-13-2348-5_5

[11] Awotunde, J.B., Chakraborty, C., Adeniyi, A.E.: Intrusion detection in industrial internet of things network-

based on deep learning model with rule-based feature selection. Wirel. Commun. Mob. Comput. 2021(2021),

7154587 (2021)

[12] Ogundokun, R.O., Awotunde, J.B., Sadiku, P., Adeniyi, E.A., Abiodun, M., Dauda, O.I.: An enhanced intrusion

detection system using particle swarm optimization feature extraction technique. Procedia Computer Science

193, 504–512 (2021)

[13] Jagdhuber, R., Lang, M., Stenzl, A., Neuhaus, J., Rahnenführer, J.: Cost-Constrained feature selection in binary

classification: adaptations for greedy forward selection and genetic algorithms. BMC Bioinformatics 21(1), 1–

21 (2020)

[14] Kumari, A., Behera, R.K., Sahoo, B., Sahoo, S.P.: Prediction of link evolution using community detection in

social network. Computing, 1–22 (2022)

[15] Mishra, N., Soni, H.K., Sharma, S., Upadhyay, A.K.: Development and analysis of artificial neural network

models for rainfall prediction by using time-series data. International Journal of Intelligent Systems

Applications, 10(1) (2018)

[16] Zhang, X., Mohanty, S.N., Parida, A.K., Pani, S.K., Dong, B., Cheng, X.: Annual and nonmonsoon rainfall

prediction modelling using SVR-MLP: an empirical study from Odisha. IEEE Access 8, 30223–30233 (2020)

[17] Jagdale, R.S., Shirsat, V.S., Deshmukh, S.N.: Sentiment analysis on product reviews using machine learning

techniques. In: Mallick, P.K., Balas, V.E., Bhoi, A.K., Zobaa, A.F. (eds.) Cognitive Informatics and Soft

Computing. AISC, vol. 768, pp. 639–647. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-

0617-4_61

[18] Hassonah, M.A., Al-Sayyed, R., Rodan, A., Ala’M, A.Z., Aljarah, I., Faris, H.: An efficient hybrid filter and

evolutionary wrapper approach for sentiment analysis of various topics on Twitter. Knowledge-Based Syst.192,

105353 (2020)

[19] Rehman, A.U., Malik, A.K., Raza, B., Ali, W.: A hybrid CNN-LSTM model for improving accuracy of movie

reviews sentiment analysis. Multimedia Tools and Applications 78(18), 26597–26613 (2019)

[20] Awotunde, J.B., Abiodun, K.M., Adeniyi, E.A., Folorunso, S.O., Jimoh, R.G.: A deep learning-based intrusion

detection technique for a secured IoMT system. Communications in Computer and Information Science, 2022,

1547 CCIS, pp. 50–62 (2021)

[21] Verma, A., Ranga, V.: Machine learning based intrusion detection systems for IoT applications. Wireless Pers.

Commun. 111(4), 2287–2310 (2020)

[22] Amouri, A., Alaparthy, V.T., Morgera, S.D.: A machine learning based intrusion detection system for mobile

Internet of Things. Sensors 20(2), 461 (2020)

https://doi.org/10.%201007/978-981-13-2348-5_5
https://doi.org/10.1007/978-981-13-0617-4_61
https://doi.org/10.1007/978-981-13-0617-4_61

S. Thenmozhi, Dr. PM. Shanthi

pg. 453

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue 1s

[23] Matloob, F., Aftab, S., Iqbal, A.: A framework for software defect prediction using feature selection and

ensemble learning techniques. International Journal of Modern Education Computer Sci. 11(12) (2019)

[24] Yalçıner, B., Özde¸s, M.: Software defect estimation using machine learning algorithms. In: 2019 4th

International Conference on Computer Science and Engineering (UBMK), pp. 487– 491. IEEE (2019)

[25] Arar, Ö.F., Ayan, K.: Software defect prediction using cost-sensitive neural network. Appl. Soft Comput. 33,

263–277 (2015)

[26] Iqbal, A., et al.: Performance analysis of machine learning techniques on software defect prediction using

NASA datasets. Int. J. Adv. Comput. Sci. Appl 10(5), 300–308 (2019)

[27] Iqbal, A., Aftab, S., Ullah, I., Bashir, M.S., Saeed, M.A.: A feature selection based ensemble classification

framework for software defect prediction. Int. J. Modern Education Comput. Sci. 11(9), 54 (2019)

[28] Lanubile, F., Lonigro, A., Vissagio, G.: Comparing models for identifying fault-prone software components.

In: SEKE, pp. 312–319 (1995)

[29] Elish, K.O., Elish, M.O.: Predicting defect-prone software modules using support vector machines. J. Syst.

Softw. 81(5), 649–660 (2008)

[30] Gondra, I.: Applying machine learning to software fault-proneness prediction. J. Syst. Softw. 81(2), 186–195

(2008)

[31] Manjula, C., Florence, L.: Deep neural network based hybrid approach for software defect prediction using

software metrics. Clust. Comput. 22(4), 9847–9863 (2018). https://doi.org/ 10.1007/s10586-018-1696-z

[32] Witten, I.H., Frank, E.: Data mining: practical machine learning tools and techniques with Java

implementations. ACM SIGMOD Rec. 31(1), 76–77 (2002)

[33] Dai, H., Hwang, H.G., Tseng, V.S.: Convolutional neural network based automatic screening tool for

cardiovascular diseases using different intervals of ECG signals. Comput. Methods Programs Biomed. 203,

106035 (2021)

[34] 34. Awotunde, J.B., et al.: An improved machine learnings diagnosis technique for COVID19 pandemic using

chest X-ray images. Communications in Computer and Information Science, 2021, 1455 CCIS, pp. 319–330

(2021)

[35] Daoud, M. S., Aftab, S., Ahmad, M., Khan, M. A., Iqbal, A., Abbas, S., ... & Ihnaini, B. (2022). Machine

learning empowered software defect prediction system.

[36] A. Iqbal, S. Aftab, U. Ali, Z. Nawaz, L. Sana et al., “Performance analysis of machine learning techniques on

software defect prediction using nasa datasets,” International Journal of Advanced Computer Science and

Applications, vol. 10, no. 5, pp. 300–308, 2019.

