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ABSTRACT 

Defect prediction is a very active area in the software engineering field. It is crucial to bridge the gap between software 

engineering and data mining to ensure the programme's success. Predicting software flaws helps find faults in the code before 

testing is done. Cluster analysis, statistical approaches, mixed algorithms, neural network-based metrics, black box testing, 

white box testing, and machine learning are only some of the methods used to investigate the software effect area while 

trying to forecast defects in software. In order to improve the accuracy of deep learning classifiers for defects forecasting, 

this study makes a novel contribution by using feature selection for the first time. This research was conducted with the hope 

of enhancing the accuracy with which errors may be predicted in five NASA data sets: CM1, JM1, KC2, KC1, and PC1.Here 

initially the data was retrieved and processed using rounded mean regressor interpolation approach. Then for selecting feature 

information grain methodology was used. Dimensionality Component Analysis (DCA), Self-Regulating Component 

Analysis (SRCA), and Non-Negative Linear Matrix Factorization (NNLMF) were used to extract features from the recovered 

data . In order to improve upon previous techniques of defect prediction, we combine the factorization selection approach 

with the deep learning-based adam hypertuned ANN using autoencoder method. All of the tests were run in a python 

environment. This research shows that, in comparison to the currently used mechanisms, defect prediction accuracy may be 

increased by the application of feature selection. 
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1. INTRODUCTION 

Software has become an important part of modern technology to the point where almost every business needs some kind of 

software [1]. But if software bugs are common, the main reason for making it is defeated, and it loses trust and dependability 

[2]. ally We live in a time when software is very important. Software that has a lot of bugs hurts its trustworthiness and 

dependability [3, 4]. Customers were unhappy with the programme because of this, which hurt the company's reputation [4, 

5]. If faults are found early on in the software development process, resources can only be put towards the parts of the 

software that need them. As a result, software defect prediction (SDP) is one of the most important parts of the software 

industry's growth in making good software. Finding bugs in software early on will save time, money, and other resources for 

businesses. A lot of people are interested in machine learning (ML) models lately because they can help predict software 

departure [6]. This had to be done so that software goods could be delivered on time and the best use of the resources was 

made [7]. But software datasets that aren't fair and have a lot of dimensions have made it hard for ML-based models to work 

well [8]. When looking at binary problems [9], accuracy has been found to be a good way to compare models. However, if 

there are a lot more instances of one class than another, the accuracy of such a model won't work well. If there are 10 faults 

out of 100 cases and 90 instances do not have any defects, the evaluation results will be different when an ML-based model 

is learned on data that is not fair. Without a doubt, the findings will favour the middle-class group. In real life [10, 11], 

imbalance is a problem that comes up a lot. This method can be used to deal with big datasets that have a lot of traits that 

classifiers need to choose from before they can make predictions or put the datasets into groups [12]. This is used to find the 

most important factors that can greatly help in accurately predicting software flaws using different machine learning-based 

models. Using feature selection methods, you can get rid of the duplicates in a dataset. The classifiers will then get rid of the 

dataset's non-independent features [13]. The feature selection method will make it easier to get rid of factors that aren't 

needed or are used more than once in datasets that are used to predict software defects [14]. Picking the right features is a  
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big part of predicting software bugs. The way this classifier is used has a big effect on how well predictions are made, so it's 

important to use the right feature selection classifier to reduce the number of dimensions. In order to predict software bugs, 

this study suggests Dimensionality Component Analysis, Self-Regulating Component Analysis, and Non-Negative Linear 

Matrix Factorization. Before the feature extraction methods were used, the information grain-based feature selection was 

used to make the dataset less complicated. Finally, Adam's hypertuned ANN with an autoencoder network predictor was 

used on the software defect datasets to make predictions about software defects. Using feature selection to lessen the large 

dimensionality of the software fault dataset is one of the study's main achievements. 

(ii) The uneven cases in the dataset were dealt with using the preprocessing method. (iii) Adam's hypertuned ANN with the 

autoencoder network method was used to correctly identify the flaws and predict software defects. 

This article subsequent parts are organized as follows. In Section II, we provide relevant prior works; in Section III, we 

present the problem statement; in Section IV, we present the implemented proposed approach of software defect detection; 

and in Section V, we present the results and discussion . The article came to a conclusion in Section VI. 

2. RELATED WORKS 

“Machine learning (ML) models have been used by several researchers to address binary classification problems in diverse 

domains, such as rainfall prediction [15, 16], sentiment analysis [17–19], network intrusion detection [11, 20–22], and 

software defect prediction [1, 2, 4, 23–25]. This research examines many publications pertaining to the Social Development 

Paradigm (SDP). The investigation conducted by the authors in reference [26] included a comprehensive examination of 

machine learning-based models used to software defect prediction (SDP). The study utilised twelve meticulously curated 

datasets sourced from NASA to evaluate the effectiveness of several classifiers. The used algorithms include of Support 

Vector Machine (SVM), K-Nearest Neighbour (KNN), Naïve Bayes (NB), Radial Basis Function (RBF), Decision Tree 

(DT), Multi-Layer Perceptron (MLP), and Random Forest (RF). The performance criteria used in evaluating the analysed 

models include recall, accuracy, receiver operating characteristic (ROC), Matthews correlation coefficient (MCC), and F1-

score. The experimental findings indicate that the RF classifier exhibited superior performance in comparison to other 

classifiers, with the SVM model ranking second. In a comparable study, the researchers in [27] used an ensemble 

classification model subsequent to using feature selection techniques to mitigate the inclusion of irrelevant characteristics in 

the dataset utilised for model evaluation. The suggested model was implemented in a binary dimension, using feature 

selection in conjunction with the classifier. Additionally, the model was applied without utilising the feature selection 

approach. The NASA datasets were used in conjunction with a range of performance indicators to assess the effectiveness 

of the suggested models. The outcomes of the model are contrasted with other cutting-edge used forecasting techniques. The 

findings demonstrated significant enhancements on some datasets; nevertheless, the model exhibited suboptimal 

performance when confronted with unbalanced class datasets due to inadequate resolution of the underlying problem by the 

suggested approach. In this study, the authors of reference [28] put forth six classifiers for Semantic Dependency Parsing 

(SDP) approaches. These classifiers use Principal Component Analysis (PCA) as a means of reducing the dimensionality of 

the features. The specific algorithms utilised in this study are Holographic Networks, Layered Neural Network, Logistic 

Regression (LR), and Discriminant Analysis. The performance parameters included in this study are the Misclassification 

Rate, Verification Cost, Predictive Validity, and Achieved Quality. The outcomes of the presented models demonstrated a 

perfect accuracy rate of 100%, particularly the model that used Principal Component Analysis (PCA) for reducing 

dimensionality, exhibiting no errors. In their study, the authors in reference [4] conducted an empirical evaluation of SDP 

models by using several ensemble approaches with boosting capabilities on three publicly available JAVA projects. The 

models are assessed using stable performance criteria such as Area Under the Curve (AUC), Balance, and G-Mean. The 

resampling techniques were used in the JAVA projects, using four ensemble classifiers. The use of resampling methods 

resulted in improved performance of classifiers in comparison to classifiers that did not employ resampling techniques. This 

finding demonstrates that the use of resampling techniques has a substantial influence on the performance of ensemble 

classifiers. Specifically, as compared to traditional boosting classifiers, the implementation of resampling techniques has led 

to significant improvements in the performance of the SDP models. Among the resampling algorithms used, RUSBoost had 

superior performance, followed by MSMOTEBoost, while SMOTEBoost demonstrated the least favourable outcomes. In a 

separate investigation conducted by [1], a model was proposed that utilises several ensemble learning techniques to forecast 

software module defects. The suggested system integrates a combination rule for ensemble models that incorporates both 

linear and non-linear approaches. The design and execution of the research used publicly accessible software defect datasets. 

The system under consideration shown a notable ability to accurately forecast software problems, yielding consistent and 

dependable outcomes across the various datasets used for performance assessment. The prediction at level l, denoted as 

Pred(l), was then used in the ensemble classifiers to assess the extent of the findings' comprehensiveness. The findings 

indicate that the average relative inaccuracy of the quantity of modules inside a dataset is either less than or equal to a 

specified threshold value, denoted as "l". The present research and assessment, using the metric, have substantiated the 

efficacy of the suggested approach in accurately predicting software defects. The performance of ensemble approaches 

shown improvement in comparison to the single fault prediction method for the prediction of software problems. The primary 
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contribution of the approach is in its ability to rapidly detect software flaws by effectively using testing resources. In their 

study, the authors introduced a model for SDP that encompasses four distinct stages: (i) feature selection, (ii) pre-processing, 

(iii) classification, and (iv) reflection of outcomes, as documented in reference [23]. The use of a feature selection model was 

employed to exclude unnecessary features from the dataset prior to the application of ensemble learning classifiers. The 

authors used the NASA MDP datasets that had been cleansed for the purpose of implementing the suggested model. Multiple 

performance criteria, including as accuracy, F1-score, Matthews correlation coefficient (MCC), and receiver operating 

characteristic (ROC), are used to evaluate the model. The model underwent testing on each dataset in order to compare and 

determine the greatest scores among the six datasets. A comparative analysis was conducted between the suggested model 

and ten other supervised classifiers. The search techniques and outcomes of the proposed system demonstrated superior 

performance in comparison to all other classifier approaches. In a scholarly investigation conducted by the authors [29], the 

use of Support Vector Machines (SVM) was presented as a means to forecast software errors. To develop the model, NASA 

datasets were employed. The suggested framework was evaluated in comparison to various models, including logistic 

regression (LR), k-nearest neighbours (K-NN), random forest (RF), naive Bayes (NB), radial basis function (RBF), and 

multilayer perceptron (MLP). The findings indicate that the suggested technique exhibited superior performance compared 

to certain categorization methods used for performance evaluation. The authors in reference [30] have shown the significance 

of feature selection in SDP systems by demonstrating that some parameters or features possess more relevance compared to 

others. The artificial neural network (ANN) is equipped with feature selection techniques to facilitate the deployment of the 

framework. The chosen characteristics are used in order to make predictions on the SDP via the implementation of ANN 

classifiers. The performance of the suggested technique was evaluated using the Gaussian Kernel Support Vector Machine 

(SVM) and the JM1 NASA dataset. Based on the outcomes obtained from the suggested model, it can be concluded that the 

Support Vector Machine (SVM) exhibited superior performance compared to the other model in the classification of defects 

in the twofold scenario. The authors in reference [31] used a hybrid approach that combined a Genetic Algorithm (GA) with 

a Deep Neural Network (DNN) for solving the Semi-Definite Programming (SDP) problem. This approach was evaluated 

using many datasets sourced from the PROMISE repository. The Hybrid Genetic Algorithm (GA) is used for the purpose of 

feature selection in order to identify the most effective characteristics for the model. Additionally, the Deep Neural Network 

(DNN) is utilised to carry out the prediction of the system. The outcomes of the suggested model shown superior performance 

compared to other methodologies used for evaluating the model's efficacy. Based on previous studies, it has been shown that 

the presence of unbalanced software data might impede the effectiveness of models, resulting in inaccurate interpretations 

of outcomes. Additionally, datasets with a large number of features can diminish the efficiency of ensemble methods. Hence, 

this research presents a hybrid model that encompasses feature selection, data normalizations, and XGBoost algorithm for 

the purpose of classifying software products and predicting the presence of flaws inside them. 

3. PROPOSED WORK 

This work examines the efficacy of the proposed learning classifiers in the context of software defect prediction, using 

benchmark datasets from NASA. Each dataset has many characteristics in addition to a predefined output class. The output 

or target class is determined by prediction using other accessible features. The characteristic that is being predicted is referred 

to as the dependent attribute, whereas the other attributes utilized to forecast the dependent attribute are referred to as 

independent attributes. The datasets used for this research consist of a dependent characteristic that is characterized by values 

of either "Y" or "N". The symbol "Y" denotes the presence of defects in a particular software instance or module, whereas 

the symbol "N" indicates the absence of defects. This study use a total of five datasets sourced from NASA for experimental 

purposes. The datasets include CM1, JM1, KC1, KC2, and PC1, as shown in Table I. Each dataset that has been chosen 

reflects a software system developed by NASA. These datasets consist of several metrics that are strongly associated with 

software quality. The suggested method architecture was illustrated  in figure 1. 
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Figure 1 Schematic representation of the suggested methodology 

Table 1 Description of the dataset 

Dataset Attributes Modules Defective  Non- 

 Defective 
 

 Defective 

 (\%) 
 

CM1 38 327 42 285 12.8 

JM1 22 7,720 1,612 6,108 20.8 

KC1 22 1,162 294 868 25.3 

KC2 40 194 36 158 18.5 

PC1 38 679 55 624 8.1 

 

3.1 Data preprocessing 

In order to get suitable data for the proposed Software Development Process (SDP) framework, many pre-processing 

processes were performed on the dataset provided by NASA. The below procedures are undertaken to modify the dataset 

used for the purpose of this investigation: 

(i) The elimination of duplicated instances refers to the identification and removal of software modules that possess identical 

class labels and software metric values, particularly in cases when these instances are associated with faulty labels. In the 

context of a practical issue, this scenario is very conceivable. Unfortunately, machine learners may have severe consequences 

when encountering multiple instances, which may lead to overoptimistic results if these instances are correctly categorised 

as part of the test data. Misclassifying these presentations as part of the test data might lead to excessively negative outcomes. 
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Moreover, this phenomenon might lead to a significant increase in the duration of the training process, hence impeding the 

enhancement of the models and classifiers' performance. Therefore, it is essential to eliminate duplicate instances inside the 

datasets. 

(ii) Relocation of Misplaced Labels: It is common to encounter several instance values associated with different software 

metrics. Multiple missing values might occur for a given occurrence, particularly when data collection was conducted in a 

casual manner, due to many factors. It has become more common for instances to be unable to meet the input requirements 

of the proposed model due to the presence of missing data that need to be processed. In the present research, in the event of 

any missing value, it is deemed appropriate to substitute such value with the mean of the corresponding measure. For 

example, let us consider a scenario where both 𝑛𝑡99 and 𝑛𝑡100are absent. In this case, we have a metric mt and its 

corresponding explanations {𝑛𝑡1, … . . , 𝑛𝑡100}. The two missing numbers may be substituted by using Equation (1). 

𝑛𝑡99 = 𝑛𝑡100 =
1

98
∑  98
𝑖=1 𝑛𝑡                                         (1) 

(iii) Data Standardization: The values of different software metrics exhibit significant variations in magnitude, necessitating 

the use of data normalisation techniques to standardise these metrics. The research used the widely utilised min-max 

normalisation approach to convert all values and normalise the data within the range [0,1]. 

The metric x exhibits a one-to-one relationship with the maximum and minimum values, which are represented as max(y) 

and min(y) respectively. The computation of the value 𝑥̃𝑖for each value of  𝑦𝑖of metric y is possible. 

𝑦𝑖̃ =
𝑦𝑖−min(𝑦)

max(𝑦)−min(𝑦)
                                                          (2) 

Subsequently, the raw data undergoes preprocessing. Data visualization refers to the systematic procedure of generating a 

visual depiction of data with the objective of enhancing comprehension of its underlying information. The evaluation of 

quality within visualization methods lacks a well-defined mathematical standard. The data is presented in a visually 

accessible style that highlights distinct bits of information. 

3.2 Feature selection 

The entropy-based selection approach known as Information Gain (IG) includes the computation of gain (y, A) from the 

output data that is categorised by feature A. The representation of the Information Gain (y,A) is as follows, 

gain⁡(𝑦, 𝐴) = entropy⁡(𝑦) − Σ𝐶∈vals⁡(𝐴)
𝑦𝑐

𝑦
entropy⁡(𝑦𝑐)  (3) 

The variable (A) represents the range of potential values for characteristic A, with Yc denoting the subset of y in which A 

has a cumulative total of c. Moreover, Eq. (3) governs the calculation of the overall entropy of variable y, which is afterwards 

used for the purpose of data segregation, specifically with respect to feature A. 

The determination of the threshold value may be done independently or by using a predetermined value of 0.05.  The final 

feature's threshold value was obtained by calculating the average of each data frequency. 

The procedure for assessing the variety of data groups entails the reduction of information value by means of calculating the 

average of associations, followed by the summation of the obtained outcomes. The technique used in this context is often 

referred to as standard deviation, which quantifies the extent to which the measured data deviates from the mean value. The 

present research utilises the data group as a measure of the informational significance of each characteristic inside a given 

dataset, as determined by the use of Equation (4). 

𝑆 = √𝑑 ∑  𝑑
𝑖=1  𝑥𝑖

2−(∑  𝑑
𝑖=1  𝑦1)

2

𝑛(𝑛−1)
                                             (4) 

In the given context, S represents the standard deviation, x denotes the average value of the IG (Information Gain), xi signifies 

the rate of x to i, and n represents the total number of features used in the dataset. 

3.3 Feature extraction 

The total number of features may be specified as an input for three distinct feature selection methods, which are outlined 

below, 

2.3.1 DCA 

By using the DCA technique on 𝑋aug , the DCs (Dynamic Connectivities) may be derived using the usual DCA process. The 

dimension of the resulting DC is1 × (𝑁input + 𝑁class ). To decrease the input dimension to𝑁feature < 𝑁input , we choose for 

𝑁feature discriminant components (DCs) that effectively capture the 𝑁feature biggest variances. Within the context of this 

discourse, the variable W is defined in the following manner. 
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𝑊Sort = [𝐷𝐶1
𝑇 𝐷𝐶2

𝑇 ⋯ 𝐷𝐶𝑁feature 

𝑇 ]

= [
𝑊input 

𝑊class 

]
                          (5) 

In this context, the superscript T denotes the transposition operation applied to a matrix. The size of 𝐷𝐶𝑖 is 

1 × (𝑁input + 𝑁class ), whereas the dimension of 𝑊sort is (𝑁input + 𝑁class ) × 𝑁feature . The terms 𝑊input and 𝑊class refer to the 

input and the class, respectively, within the context of the enhanced input. 

The modified data on the feature space may be obtained by multiplying the 𝑊sort  with the augmented data 𝑋aug  

𝑋feature = [𝑋 𝐶(𝑋)] × [
𝑊input 

𝑊class 

]

= 𝑋 ×𝑊input + 𝐶(𝑋) ×𝑊class 

                                (6) 

The equation mentioned above cannot be applied to data instances with unknown class labels, since it relies on the presence 

of the class label C(X). Based on the observation that the factors of matrix W in the k-th column and j-th row (where k ranges 

from 1 to 𝑁input and j ranges from 1 to𝑁feature ) are much lower compared to the other factors of W, we may derive the 

following approximate equation for the calculation of 𝑋feature . 

𝑋feature ≅ 𝑋 ×𝑊input                                                 (7) 

The aforementioned equation has the capability to be used for any variable X, regardless of its unknown classification, in 

order to get the matching value inside the feature space. 

2.3.2 SRCA 

The SRCA method is a computer methodology used for nonlinear feature extraction. It involves subdividing a signal into its 

statistically independent components, often known as ICs. The study employs SRCA as a method for lowering the 

dimensionality of the original features and extracting the essential independent characteristics from the provided signal. The 

ICs of a dataset are determined by the execution of the subsequent mathematical calculation. 

1. Let us consider a scenario where there are n linear vectors that are obtained from a combination of 𝑁1, 𝑁2, … , 𝑁𝑘, 

each of which represents k observations. Likewise, the source vector x is constructed using the elements 

𝑥1, 𝑥2, … , 𝑥𝑘. The weighted matrix, designated as W, is represented by components 𝑎𝑖,𝑗. The mixing model may be 

expressed as follows. 

𝑁 = 𝑊𝑥                                                                   (8) 

The model may also be written with the segments of the matrix W represented by the symbols 𝑎𝑗.  

𝑁 = ∑  𝑛
𝑖=1 𝑎𝑖𝑥𝑖                                                                (9) 

SRCA is the name of the factual model represented by Eq. (9). SRCA's status as a generative model is therefore confirmed. 

This means that it shows how the things that viewers see are made via a process of combining various elements of 𝑥𝑖. 

2.  Then, by evaluating the matrix W, we can obtain the IC defined by its inverse, say A. 

𝑁 = 𝐴𝑥                                                                        (10) 

where W and A are complementary opposites of one another. 

In this study, the characteristics are retrieved in order to carry out the SRCA calculations. 

2.3.3 NNLMF 

In the context of a vector 𝑣‾ containing N high-dimensional points 𝑧1, 𝑧2, ⋯ 𝑧𝑛, the calculation of the Euclidean distances 

between any two points 𝑧𝑖  and 𝑧𝑗 inside the vector 𝑣‾ is used to derive a conditional probability 𝑃𝑗∣𝑖. This conditional 

probability serves as a measure of resemblance between the point 𝑧𝑖   and the point 𝑧𝑗. To clarify, the conditional probability 

𝑃𝑗∣𝑖denotes the chance that the point 𝑧𝑖   would choose 𝑧𝑗 as its neighbour, assuming that the probability density of the features 

follows a normal distribution (Gaussian) and is centred at the point 𝑧𝑖. Therefore, the conditional probability exhibits an 

increase when considering neighbouring data points, however for data points that are far apart, 𝑃𝑗∣𝑖becomes almost negligible. 

Mathematically, the conditional probability 𝑝𝑗∣𝑖   may be denoted as such, 

𝑝𝑗∣𝑖 =
exp⁡(−∥∥𝑧𝑖−𝑧𝑗∥∥2

/2𝜎𝑖
2)

∑  𝑘≠𝑖  exp⁡(−∥∥𝑧𝑖−𝑧𝑗∥∥
2
/2𝜎𝑖

2)
                                            (11) 

where 𝜎𝑖 is the mean of the Gaussian distribution centred at the position𝑥𝑖. 
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The conditional probability of a point being next to itself is 0 since the method focuses on representing pairwise similarities 

𝑃𝑖∣𝑖 = 0. 

A conditional probability, 𝑞𝑗∣𝑖 may be derived to characterise the similarities between the map feature points 𝑦𝑖  and 𝑦𝑗, which 

are the low-dimensional analogues of the high-dimensional 𝑧𝑖 and 𝑧𝑗, respectively.  

𝑞𝑗∣𝑖 =
exp⁡(−∥∥𝑧𝑖−𝑧𝑗∥∥2

)

∑  𝑘≠𝑖  exp⁡(−∥∥𝑧𝑖−𝑧𝑗∥∥
2
)
                                              (12) 

Since this method is solely interested in simulating pairwise similarities, the conditional probability 𝑞𝑖∣𝑖is similarly zero 

(𝑞𝑖∣𝑖=0). 

In order to obtain a low-dimensional representation of the data that minimises the discrepancies between⁡𝑝𝑗∣𝑖 and 𝑞𝑗∣𝑖, the 

dimensionality reduction mapping is performed. The gradient descent technique is used frequently in NNLMF to achieve 

this for a certain cost function C, such that 

𝐶 = ∑  𝑖 𝐾𝐿(𝑃𝑖 ∥ 𝑄𝑖) = ∑  𝑖 ∑  𝑗 𝑝𝑗∣𝑖log⁡
𝑝𝑖∣𝑖

𝑞𝑖∣𝑖
                    (13) 

The Kullback-Leibler divergence function of 𝑃𝑖 ∥ 𝑄𝑖is denoted by 𝐾𝐿(𝑃𝑖 ∥ 𝑄𝑖). The Kullback-Leibler divergence, denoted 

as 𝐾𝐿(𝑃𝑖 ∥ 𝑄𝑖), is the distance between two discrete probability distributions 𝑃𝑖   and 𝑄𝑖 , and it is defined as,     

𝐾𝐿(𝑃𝑖 ∥ 𝑄𝑖) = −∑  𝑥∈𝑋 𝑃𝑖(𝑧)log⁡ (
𝑄𝑖(𝑧)

𝑃𝑖(𝑧)
)                    (14) 

This is equivalent to 

𝐾𝐿(𝑃𝑖 ∥ 𝑄𝑖) = ∑  𝑥∈𝑋 𝑃𝑖(𝑧)log⁡ (
𝑃𝑖(𝑧)

𝑄𝑖(𝑧)
)                       (15) 

The expectation of the logarithmic difference between 𝑃𝑖  and 𝑄𝑖is given by Equation (5) above. Any random continuous 

variable x in 𝑃𝑖  and 𝑄𝑖may be treated in the same way. 

𝐾𝐿(𝑃𝑖 ∥ 𝑄𝑖) = ∫  
∞

−∞
𝑝𝑗∣𝑖(𝑧)log⁡ (

𝑝𝑗∣𝑖(𝑧)

𝑞𝑗∣𝑖(𝑧)
) 𝑑𝑧             (16) 

where 𝑝𝑗∣𝑖 and 𝑞𝑗∣𝑖are the distributions of likelihoods of 𝑃𝑖  and 𝑄𝑖 . 

The Kullback-Leibler divergence function may be rewritten as when 𝑃𝑖  and 𝑄𝑖are evaluated over continuous sets X and P. 

𝐾𝐿(𝑃𝑖 ∥ 𝑄𝑖) = ∫  
𝑧
log⁡ (

𝑑𝑃𝑖

𝑑𝑄𝑖
) 𝑑𝑃𝑖                            (17) 

where 
𝑑𝑃𝑖

𝑑𝑄𝑖
 in (7) is a derivative of Radon and Nikolayevich Nikodym of 𝑃𝑖  with respect to 𝑄𝑖 . 

By using the chain rule for factorization, we can rewrite (17) as 

𝐾𝐿(𝑃𝑖 ∥ 𝑄𝑖) = ∫  
𝑋
log⁡ (

𝑑𝑃𝑖

𝑑𝑄𝑖
)
𝑑𝑃𝑖

𝑑𝑄𝑖
𝑑𝑄𝑖                          (18) 

It is commonly agreed that the entropy of 𝑃𝑖   with respect to 𝑄𝑖is given by the preceding equation. 

If we have two absolutely continuous probability densities 𝑝𝑗∣𝑖and 𝑞𝑗∣𝑖such that𝑝𝑗∣𝑖 =
𝑑𝑃𝑖

𝑑𝜇
 and 𝑞𝑗∣𝑖 =

𝑑𝑄𝑖

𝑑𝜇
, then the Kullback-

Leibler divergence from 𝑄𝑖  to 𝑃𝑖is given by for every measure on the set z. 

𝐾𝐿(𝑃𝑖 ∥ 𝑄𝑖) = ∫  
𝑧
log⁡ (

𝑝𝑗∣𝑖

𝑞𝑗∣𝑖
) 𝑑𝜇                               (19) 

Recursively using a gradient descent algorithm, the following form is used to minimise the cost function in (19): 

𝛿𝐶

𝛿𝑦𝑖
= 2∑  

𝑗

(𝑝𝑗∣𝑖 − 𝑞𝑗∣𝑖 + 𝑝𝑖∣𝑗 − 𝑞𝑖∣𝑗)(𝑧𝑖 − 𝑧𝑗)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(20) 

𝑧𝑖 and 𝑧𝑗 are located at different coordinates on a map. 

In order to update the map's coordinates at each iteration, the factorised gradient is added to an exponentially decaying sum 

of prior gradients. The specified formula controls this update 

𝑧𝑡 = 𝑧(𝑡−1) + 𝛽
𝛿𝐶

𝛿𝑦𝑖
+ 𝛼(𝑡)(𝑧(𝑡−1) − 𝑧(𝑡−2))⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(21) 
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where 𝑧𝑡 represents the gradient value at iteration t is denoted as β, the learning rate is represented by α, and α(t) is a 

substantial momentum factor that is included into the gradient to enhance the identification of local minima.  

It is crucial to note that the computational complexity of Non-Negative Matrix Factorization is of the order O(N^2). 

Nevertheless, the application of the cost function (Equation (3)) of NNLMF is constrained due to its quadratic scaling with 

respect to the number of objects N. Consequently, it is only suitable for datasets containing a small number of input objects, 

typically in the range of a few thousand. As the size of datasets increases, it is anticipated that the learning process would 

experience a decrease in speed, while the memory needs will see an increase. Due to recent advancements in high-end 

computer technology and its increased affordability, the execution of NNLMF on extensive datasets may now be 

accomplished within a matter of minutes. 

d. Defect prediction 

The features obtained from the three different methodologies are separately given as a input to this optimized classifier. The 

current study is centred on the proposition of an adam hypertuned ANN with an autoencoder. The outputs of the routes are 

combined and then fed into another pathway, which utilises a distinct set of network layers, in order to get the ultimate 

output.  

The use of autoencoders in the hyperparameter tuning of ANNs is grounded on the widespread adoption of ANNs as a 

prominent architecture for data processing. Typically, this neural network model takes into account the characteristics derived 

from the dataset. The proposed architecture utilises a dataset containing features denoted as𝑓𝑘(𝑘 = 1,2,3,4…… ), where k 

represents the index of the network layer. 

Every layer consists of a set of neurons and an activation function. The characteristics are convolved using several network 

layers, referred to as convolutional pathways, and the resulting output of these convolutional routes is then concatenated to 

get the final resultant output.  

A network consisting of several layers, with a certain number of layers denoted as "l", and an encoder function 𝜎𝑙 

Step 1: To ascertain the output of the Hidden layer, it is necessary to determine its corresponding values hl =
𝜎𝑙(𝑊𝑙

𝑇ℎ𝑙−1 + b𝑙) and the network ẑ = h𝑙 

Step 2: Compute the gradient 𝛿 =
∂𝜀(𝑧𝑖𝑧𝑖̂)

∂𝑦
 

 for i ⟵ 𝑙 to 0 do  

Regarding the computation of the current layer gradient: 

∂𝜀(𝑧,𝑧̂)

∂𝑊𝑙
=

∂𝜀(𝑧𝑖𝑧𝑖̃)

∂ℎ1

∂ℎ1

∂𝑊1
= 𝛿

∂ℎ1

∂𝑊1

∂𝜀(𝑧,𝑧̂)

∂𝑏𝑙
=

∂𝜀(𝑧𝑖(𝑧𝑖̃)

∂ℎ1

∂ℎ1

∂𝑏1
= 𝛿

∂ℎ1

∂𝑏1

                                       (22) 

Apply gradient descent using 
∂𝜀(𝑧,𝑧̃)

∂𝑤𝑙
=

∂𝜀(𝑧,𝑧̃)

∂𝑏𝑙
 

Step 3: The gradient is propagated backwards to the lowest layer. 

𝛿 ⟵
∂𝜀(𝑧𝑖𝑧𝑖̃)

∂ℎ1

∂ℎ1

∂ℎ𝑙−1
= 𝛿

∂ℎ1

∂ℎ𝑙−1
                                     (23) 

Step 4: In the above experimental setup, the hyperparameters of the model A are fine-tuned for each batch of zi, with the 

corresponding target variable yi.  

𝑧𝑖̂ = 𝑍(𝜃, 𝑥);

𝜃 = 𝜃 − 𝜂 ⋅
1

𝑀
∑  𝑀
𝑖=1  

∂𝜀(𝑧𝑖𝑧𝑖̂)

∂𝜃

                                 (24) 

Table 2 Hyperparameters of the suggested framework 

Hyperparameters  

“Number of layers 16 

Activation function ReLU 
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Optimizer Adam 

Batch size 32,64,128 

Learning rate 0.00010 

Loss function Mean_squared_error” 

 

The Adam divisive algorithm is a well-known adaptive learning rate optimisation approach. The optimisation technique 

under consideration was especially devised for the purpose of enhancing deep learning methodologies. The algorithm's main 

use lies in its capacity to ascertain personalised adaptive learning rates for a diverse array of factors. The nomenclature of 

the method is derived from its procedure of adaptive moment estimation. In a deep neural network, the learning rate for each 

weight is improved separately by using first- and second-moment gradient estimations. The concepts of mean and variance 

may be seen as the first and second moments, respectively. The Adam optimisation approach employs exponentially 

weighted moving averages to estimate the moments inside each batch throughout each iteration. The selection rule for the 

divisive parameter value of the Adam optimizer may be used to elucidate certain mathematical calculations. This rule is 

outlined as follows: 

𝐸 = {𝑅1, 𝑅2, 𝑅3, … . , 𝑅𝑛}  (25) 

The tuning rule is defined as follows 

𝑉𝑗(𝐸𝑖) = {
𝑧𝑗,𝑖 (1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑛)

(1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑛)
                        (26) 

The last stage of the procedure is modifying the learning rate for each parameter by using moving averages. To determine 

the weighted value update, we may use Equation (27). 

𝑈𝑡 = 𝑈𝑡−1 − 𝛼
𝑁𝑡̅̅̅̅

√𝑈𝑡̂+𝜖
                                                (27) 

The default value for α, denoted as the learning rate or step size, is set to 10^(-8) in the context where t represents the number 

of iterations and w represents the tuned value weight. 

Equation (28) illustrates the methodology for selecting the hyper-tuned value attributes.  

𝑌𝑛(𝑒
𝑗Ω) = ∑  ∞

𝑚=−∞ 𝑌[𝑁]𝑈[𝑛 − 𝑚]𝑒−𝑗Ωm                         (28) 

The overall temporal complexity of the proposed framework is evaluated by analysing several factors, such as the number 

of layers, the depth of each layer, and the spatial extent of the output map. This evaluation is expressed mathematically in 

Equation 29. 

O(∑  𝑑
𝑘=1  𝑛𝑘−1 ⋅ 𝑠𝑘

2 ⋅ 𝑛𝑘 ⋅ 𝑚𝑘
2)                                       (29) 

where 

“𝑘 = index of a layer 

𝑑 = depth of the layer 

𝑛𝑘 = number of parameters in the kth layer 

𝑛𝑘−1 = number of input channels of the 𝑘th  layer 

𝑠𝑘 = length / spatial size of the tuned value 

𝑚𝑘 = spatial size of the output map” 

The training time for each input is typically three times longer than the testing time, as measured for both forward and 

backward propagation. During the forward propagation phase, the performance of the proposed framework is evaluated by 

the computation of the loss using the cross-entropy method. On the other hand, the backpropagation phase involves the 

update of kernels and weights. 

The updating of kernels and weights is performed based on the loss value. Hence, the procedure is used to iterate through 

the trainable parameters (kernels and weights) in order to minimise the loss. The process involves the use of a gradient loss 

function, which guides the model in the direction of the steepest rise rate. Additionally, various hyperparameters, such as the 
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Adam optimizer, are selected prior to commencing the actual training process. Additionally, it is advised to use fixed input 

and output layers in the proposed network, with an emphasis on using Fully Convolutional Networks (FCN) instead of Fully 

Connected (FC) layers. 

To predict the probability of defect,  

𝑗𝑡 = 𝜎(𝐾ℎ𝑡,𝐵𝑖−𝑀𝐷𝑆𝑃𝑁 + 𝑏)

𝐻𝑡 = ReLU⁡(𝐽ℎ𝑡,𝐵𝑖−𝑀𝐷𝑆𝑃𝑁𝑊
+ 𝑏̃)

𝐶𝑡 = 1 − 𝐺𝑡
𝑂𝑡 = 𝑘𝑡𝐺𝑡 + ℎ𝑡,𝐵𝑖−𝑀𝐷𝑆𝑃𝑁𝑊

𝐶𝑡

                               (30) 

The weight matrices G, as well as the bias vectors b and 𝑏̃,, are shown. The activation function is often represented by the 

acronym "ReLU." The degree of output transformation is regulated by the encoder and decoder layers of 𝐺𝑡. The resultant 

vector is represented by the symbol 𝑂𝑡. The software problem may now be accurately identified.  

4. PERFORMANCE ANALYSIS 

This study utilises publicly accessible benchmark datasets from the NASA promise repository to examine the enhancement 

of defect prediction accuracy with the use of feature selection. 

The objective of this section is to evaluate the effectiveness of various categorization approaches. The sample input and the 

data visualization process was done that was illuystrated in figure 2 and 3 

 

Figure 2  Sample data input from NASA dataset 

 

Figure 3  Process of data visualization 
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Figure 4 Classified output 

Depend upon the features selected the defect module was classified by using the suggested methodology as depicted in figure 

4. 

The performance of the system is assessed and appraised using a range of metrics derived from the confusion matrix. A 

confusion matrix is composed of the following parameters: 

A true positive (TP) refers to instances that are both truly positive and correctly labelled as positive. 

False positives (FPs) refer to instances that are labelled as positive, although being genuinely negative. 

False negatives (FN) refer to instances that are really positive but are incorrectly labelled as negative. 

True Negative (TN) refers to events that are really negative and are correctly classed as negative. 

The evaluation of classification algorithms is conducted using the following measures: The evaluation metrics often used in 

information retrieval and learning algorithm tasks include precision, recall, F-measure, and accuracy. 

Precision may be defined as the proportion of True Positive  modules in relation to the total number of modules that are 

categorised as positive.  

Precision =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
      (31) 

Recall may be defined as the proportion of True Positive  modules in relation to the overall number of modules that are really 

positive. 
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 Re call =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
  (32) 

F-measure provides the average of Precision & Recall . 

F-measure =
 Precision ∗ Recall ∗2

( Precision + Recall )
    (33) 

Accuracy refers to the degree to which a forecast aligns with the actual outcome, reflecting the level of precision in the 

prediction.  . 

 Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (34) 

 

Figure 5 .CM1 dataset Classification report 

 

Figure 6   .JM1 dataset Classification report 

 

Figure 7 KC1 dataset Classification report 
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Figure 8 KC2 dataset Classification report 

 

Figure 9 PC1 dataset Classification report 

 

Figure 10 Performance analysis of the suggested methodology 

The classification performance outcome ratio of the suggested methodology over 5 different datasets was demonstrated in 

figure 5-10 

Table 3: CM1 dataset comparative performance analysis 

Methodology Precision Recall F-

measure 

Accuracy 

LM 0.9110 0.91130 0.9113 91.13150 
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BFG 0.8831 0.8777 0.880400 88.07340 

CG 0.8634 0.9083 0.8852 88.22630 

Proposed 78 81 80 81 

 

Table 3 presents the findings obtained from the CM1 dataset. The results indicate that the suggested approach achieved a 

comparable performance to existing training methods, as shown by an Accuracy score of 81%. 

Table 4: JM1 dataset comparative performance analysis 

Methodology Precision Recall F-

measure 

Accuracy 

LM 0.79980 0.8056 0.80270 80.1943 

BFG 0.79080 0.8132 0.80180 79.9028 

CG 0.80220 0.7929 0.79750 79.8705 

Proposed 0.78 0.810 0.79 0.81 

 

Table 4 presents the findings obtained from the analysis of the JM1 dataset. The results indicate that the suggested approach 

achieved a comparable performance to existing training methods, as shown by an Accuracy score of 81%. 

Table 5: KC1 dataset comparative performance analysis 

Methodology Precision Recall F-measure Accuracy 

LM 0.80430 0.8029 0.80360 80.37870 

BFG 0.78010 0.7909 0.78550 78.3993 

CG 0.7873 0.7771 0.7822 78.3563 

Proposed 0.81 0.82 0.81 0.82 

 

The outcomes for the KC1 dataset are shown in Tab 5. With an Accuracy score of 82%, it is clear that the suggested technique 

performed similarly to previous training methods. 

Table 6: KC2 dataset comparative performance analysis 

Methodology Precision Recall F-measure Accuracy 

LM 0.94330 0.94330 0.9433 94.3299 

BFG 0.8670 0.907200 0.8866 88.40210 

CG 0.828100 0.8196 0.8238 82.4742 

Proposed 0.810 0.82 0.81 0.82 

 

The KC2 dataset's final findings are shown in Tab 6. With an Accuracy score of 82%, it is clear that the suggested technique 

performed similarly to previous training methods. 

Table 7: PC1 dataset comparative performance analysis 

Methodology Precision Recall F-measure Accuracy 

LM 0.93810 0.93810 0.93810 93.8144 

BFG 0.93230 0.93230 0.93230 93.2253 
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CG 0.93230 0.93230 0.93230 93.2253 

Proposed 90 91 91 91 

 

Table 7 presents the findings pertaining to the PC1 dataset. The results indicate that the suggested approach achieved a 

comparable performance to existing training methods, as shown by an Accuracy score of 91%. 

Table 8: Evaluation of the suggested method's accuracy in comparison to existing classification strategies [36] 

Datas

et 

MLP NB SVM RBF kStar kNN PART OneR RF DT Propos

ed 

CM1 86.734

7 

82.653

10 

90.816

30 

90.816

30 

77.551

0 

77.551

0 

90.816

3 

85.7143

00 

89.795

9 

77.551

00 

81 

JM1 80.354

10 

79.835

90 

79.188

30 

80.397

2 

75.993

1 

73.963

70 

79.490

50 

77.1580

90 

80.181

30 

79.101

90 

81 

KC1 77.363

9 

74.212

0 

75.358

20 

78.796

6 

72.206

3 

69.341 76.504

3 

73.3524

0 

77.937 75.644

7 

82 

KC2 82.758

60 

81.034

50 

82.758

60 

77.586

20 

75.862

10 

75.862

10 

79.310

30 

82.7586

0 

77.586

20 

75.862

10 

82 

PC1 96.568

60 

89.705

90 

95.098

0 

94.607

80 

86.274

50 

92.647

10 

93.137

30 

94.6078

0 

96.078

40 

93.137

30 

91 

 

Based on the findings shown in Table 8, the proposed approach demonstrates superior performance by achieving a much 

higher level of efficiency compared to other currently used mechanisms”. GAK385YA51 

5. CONCLUSION  

The present work introduces a novel model for the anticipation of software errors that are likely to occur inside software 

modules. The timely identification of software module defects may significantly mitigate the expenses associated with the 

software development life cycle. The feature selection method in the proposed system involves the use of Dimensionality 

Component Analysis, Self-Regulating Component Analysis, and Non-Negative Linear Matrix Factorization techniques. 

These techniques are employed to identify and discard unnecessary characteristics that do not contribute significantly to the 

classification process of the model. The use of data normalization was employed in order to mitigate the issue of excessive 

dimensionality within the datasets utilised, hence enhancing the performance of the suggested model. Adam used a hyper-

tuned artificial neural network (ANN) that employed an autoencoder network to forecast the software metrics module using 

four datasets provided by NASA. The evaluation of the model's performance on the five datasets revealed that the adam 

hypertuned artificial neural network (ANN), which used an autoencoder network with Non-Negative Linear Matrix 

Factorization for feature selection, had superior results specifically on the PC1 dataset. The findings of the proposed 

framework demonstrate that the inclusion of feature selection significantly enhances the performance of the prediction model 

in comparison to the model that lacks feature selection. However, it is important for future research to continue optimising 

different classifiers by using a comprehensive range of features. This will allow for a wider selection of variations to be 

considered for machine learning-based models. The use of Deep learning models using feature selection techniques is 

expected to enhance the accuracy of software module fault classification.. 
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