

# Development and Characterization of a Clotrimazole–Zinc Oxide Topical Suspension with Improved Skin Protection

## Pravin P. Honmane\*1, Swati Patil2, Manojkumar Hadadare3, Supriya Londhe4

\*1 Adarsh College of Pharmacy, Vita, Maharashtra, India.

## \*Corresponding author:

Pravin P. Honmane

Email ID: pravin.honmane@gmail.com

Cite this paper as: Pravin P. Honmane, Swati Patil, Manojkumar Hadadare, Supriya Londhe, (2025) Development and Characterization of a Clotrimazole–Zinc Oxide Topical Suspension with Improved Skin Protection. *Journal of Neonatal Surgery*, 14 (1s), 1455-1461.

#### **ABSTRACT**

Clotrimazole is a well-known antifungal agent frequently used in the treatment of various superficial fungal infections, while Zinc Oxide is a widely accepted skin protectant with soothing, astringent, and antimicrobial properties. Combining these agents in a topical suspension offers a dual therapeutic approach, enhancing both antifungal efficacy and skin protection. The present study aimed to formulate, evaluate, and conduct stability studies on topical suspensions containing Clotrimazole and Zinc Oxide to enhance skin protective properties while maintaining effective antifungal activity. Four topical suspension formulations (F1–F4) were developed by varying the concentration of suspending agents and were assessed for organoleptic characteristics, pH, viscosity, spreadability, drug content, and in vitro antifungal activity against *Candida albicans*. Viscosity was determined using a Brookfield viscometer, drug content was analyzed by UV–Visible spectrophotometry at 261 nm, and pH was measured using a calibrated digital pH meter. The agar well diffusion method was employed to assess antifungal activity, while stability studies were carried out as per ICH Q1A(R2) guidelines under real-time and accelerated conditions for three months. All formulations showed acceptable organoleptic properties and pH values suitable for topical use, with formulation F3 exhibiting optimum viscosity, satisfactory spreadability, the highest drug content (99.4%), and superior antifungal activity (22.0 mm zone of inhibition). Stability studies confirmed no significant changes in evaluated parameters over the study period. Overall, the optimized formulation F3 demonstrated enhanced antifungal efficacy and skin protective properties, suggesting its potential as a safe and effective topical treatment for fungal skin infections.

**Keywords:** Clotrimazole; Zinc Oxide; topical suspension; antifungal activity; formulation development; stability studies; Candida albicans

## 1. INTRODUCTION

Topical drug delivery systems provide localized therapeutic effects at the site of infection or inflammation, reducing systemic side effects and improving patient compliance. Among these, suspensions offer significant advantages in delivering poorly water-soluble drugs while ensuring adequate skin contact and therapeutic activity [1]. Clotrimazole is a widely used antifungal agent effective against dermatophytes, yeasts, and molds. It disrupts fungal cell membranes by inhibiting ergosterol synthesis. Despite its efficacy, Clotrimazole's conventional topical formulations often suffer from poor spreadability and lack of soothing effects on inflamed skin [2]. Zinc Oxide is traditionally known for its astringent, soothing, and skin-protective properties, used in treating various dermatological conditions [3]. Its combination with Clotrimazole in a suspension form could offer enhanced antifungal and protective effects, particularly in treating fungal infections associated with skin irritation. The objective of this study was to formulate, evaluate, and perform stability studies on a topical suspension containing Clotrimazole and Zinc Oxide using sodium carboxymethyl cellulose as a suspending agent [4]. The formulation was assessed for physicochemical properties, antifungal activity, and stability under accelerated and real-time conditions [5].

<sup>&</sup>lt;sup>2</sup>Adarsh College of Pharmacy, Vita, Maharashtra, India.

<sup>&</sup>lt;sup>3</sup>Bharati College of Pharmacy, Palus, Maharashtra, India.

<sup>&</sup>lt;sup>4</sup>Adarsh College of Pharmacy, Vita, Maharashtra, India.

#### 2. MATERIALS AND METHOD

#### Material

As a generous gift sample from Teva Pharmaceutical Pvt. Clotrimazole was obtained. Ltd., Mumbai, India. Zinc Oxide was taken from Merck Specialities Pvt. Ltd., Mumbai, India. Loba Chemie Pvt. purchased Sodium Carboxymethyl Cellulose (NaCMC). Ltd., Mumbai, India. SD Fine-Chem Ltd., Mumbai, India supplied glycerin. Propylparaben and Methylparaben were procured from HiMedia Laboratories Pvt. Ltd., Mumbai, India. Sodium citrate and Citric acid were procured from Qualigens Fine Chemicals, Mumbai, India. All other reagents and solvents used were of analytical reagent (AR) grade, and distilled water was prepared freshly in house.

#### Method

## **Formulation Development**

The topical suspension was developed by initially selecting Clotrimazole as the antifungal agent and Zinc Oxide for its skin protective, astringent, and anti-inflammatory properties, aiming to create a dual-action formulation for enhanced topical application. Sodium Carboxymethyl Cellulose (NaCMC) was incorporated as a suspending agent due to its excellent viscosity-enhancing and stabilizing characteristics, while Glycerin served as a humectant to retain skin moisture [6]. Methylparaben and Propylparaben were employed as preservatives to inhibit microbial growth and prolong the formulation's shelf life, with Citric acid and Sodium citrate included as buffering agents to maintain pH in the dermatologically acceptable range of 6.0-6.5. The formulation process began by dispersing NaCMC in a portion of distilled water under continuous mechanical stirring (Remi Motors, India) to prepare a smooth, lump-free dispersing medium. Clotrimazole and Zinc Oxide were accurately weighed and triturated together in a mortar and pestle to obtain a homogenous fine powder, which was then blended with Glycerin to form a uniform paste. This paste was gradually incorporated into the dispersing medium under continuous stirring to ensure even distribution of the active ingredients. Separately, Methylparaben and Propylparaben were dissolved in warm water to form preservative solutions, which were added to the suspension with thorough mixing [7]. The pH of the formulation was adjusted by adding a freshly prepared buffer solution containing Citric acid and Sodium citrate dropwise. Finally, the volume was made up with distilled water, and the suspension was homogenized at 5000 rpm for 5 minutes using a high-speed homogenizer (IKA T18 Digital, Germany) to ensure uniformity. The prepared formulations were transferred into amber-colored glass bottles to prevent light-induced degradation, tightly sealed, and stored at room temperature for further evaluation [8]. Four formulations (F1-F4) were developed by varying the concentration of Sodium CMC to assess its influence on suspension stability and consistency, with their composition details provided in Table 1.

Table 1: Composition of Topical Clotrimazole and Zinc Oxide Suspensions

| Ingredients             | F1 (% w/v) | F2 (% w/v) | F3 (% w/v) | F4 (% w/v) |
|-------------------------|------------|------------|------------|------------|
| Clotrimazole            | 1.0        | 1.0        | 1.0        | 1.0        |
| Zinc Oxide              | 5.0        | 5.0        | 5.0        | 5.0        |
| Sodium CMC              | 0.5        | 1.0        | 1.5        | 2.0        |
| Glycerin                | 5.0        | 5.0        | 5.0        | 5.0        |
| Methylparaben           | 0.1        | 0.1        | 0.1        | 0.1        |
| Propylparaben           | 0.05       | 0.05       | 0.05       | 0.05       |
| Sodium citrate          | 0.05       | 0.05       | 0.05       | 0.05       |
| Citric acid             | 0.05       | 0.05       | 0.05       | 0.05       |
| Distilled Water (up to) | 100        | 100        | 100        | 100        |

## **Evaluation of Formulated Suspensions**

#### Organoleptic Characteristics

Each formulation was visually inspected for color, odor, consistency, and homogeneity [9].

#### pH Measurement

Each formulation pH was measured using pH meter (digital pH 700, LabIndia, India) calibrated with standard buffer solutions of pH 4.0, 7.0 and 9.2 prior to use [10].

## **Viscosity Determination**

Measurements were performed in triplicate using a spindle no. 64 at 20 rpm with a Brookfield Viscometer (Model LVDV-II+, Brookfield Engineering Labs, USA) at 25°C [11].

## **Spreadability Test**

The glass slide method was used to determine spreadability. The suspension pre weighed to a quantity of 1 g was placed between two glass slides; the top slide has placed on it a weight of 500 g for 5 min. Diameter of the spread suspension was measured in centimeters and the mean of three determinations recorded [12].

#### **Drug Content Estimation**

The required quantity (1 g) of suspension was accurately measured dissolved in 50 ml methanol with an ultrasonic bath (PCI Analytics, India) at 15 minutes and passed through Whatman filter no. 41 and properly diluted. Spectrophotometric analysis at 261 nm using UV visible spectrophotometer (UV-1800, Shimadzu Corporation, Japan) was performed to analyze Clotrimazole content. An additional 12 triplicate samples were cultured [13].

## In Vitro Antifungal Activity

Antifungal activity at an agar well diffusion method was determined against Candida albicans. The fungal strain was inoculated on Sabouraud Dextrose Agar (SDA) plates and making the wells using a sterile cork borer (6 mm). The plates were incubated at 28°C for 48 hours with formulation samples (100 µl) placed in the wells. One millimeter of the zone of inhibition was measured using a digital Vernier caliper [14].

## **Stability Studies**

Optimized formulation (F3) was subjected to the stability studies as per ICH Q1A(R2) under accelerated ( $40 \pm 2^{\circ}$ C at 75% RH  $\pm$  5% for 3 months) & real time ( $25 \pm 2^{\circ}$ C at 60% RH  $\pm$  5% for 3 months) condition using stability chamber (Thermo Lab, India). At 0, 1, 2, and 3 months, samples were withdrawn for appearance, pH, viscosity, spreadability, drug content, and antifungal activity [15].

#### 3. RESULT AND DISCUSSION

## Organoleptic Characteristics

All formulations (F1, F2, F3, F4) were visually inspected for color, odor, consistency, and homogeneity. All the formulations were found to be white, smooth, and homogenous, with no visible signs of separation or settling over time. These observations indicate that the suspensions are well-prepared and stable in terms of appearance.

#### pH Measurement

The pH of each formulation was measured and the results are presented in Table 1. The pH of the formulations ranged from 6.1 to 6.5. Specifically, F1 had a pH of 6.1, F2 showed a pH of 6.2, F3 had a pH of 6.3, and F4 exhibited a pH of 6.5 (Figure 1). The slight increase in pH with each subsequent formulation could be attributed to the presence of more alkalizing agents or buffering agents in higher concentrations in formulations F3 and F4. The pH of all formulations was within the ideal range for skin applications (5.5–7), indicating their compatibility with the skin.

#### Viscosity Determination

The viscosity of the formulations, which is crucial for determining the ease of application and spreadability, increased as the concentration of the suspending agent increased (Table 1). The viscosity values ranged from  $610 \pm 5.0$  cP in F1 to  $980 \pm 6.5$  cP in F4 (Figure 2). F1 showed the lowest viscosity, indicating a thinner suspension, while F4 exhibited the highest viscosity, which is generally expected with higher concentrations of stabilizing agents. The increase in viscosity suggests that the suspensions become thicker and more stable as the formulation progresses from F1 to F4.

### Spreadability Test

Spreadability is an important parameter that determines how easily a topical formulation can be applied over the skin. The spreadability of the formulations decreased with increasing viscosity. As shown in Table 1 and Figure 3, F1 had the highest spreadability of  $7.1 \pm 0.06$  cm, while F4 showed the lowest spreadability of  $5.8 \pm 0.09$  cm. This is consistent with the fact that higher viscosity suspensions tend to spread less easily. The reduced spreadability of F4 indicates that while the suspension is more stable, it might require more effort for spreading on the skin compared to F1.

## In- vitro Drug Content Estimation

Drug content was determined spectrophotometrically and the results, as shown in Table 1, revealed that all formulations had a drug content close to the target of 100%. The drug content varied between  $98.5 \pm 0.4\%$  for F1 and  $99.4 \pm 0.3\%$  for F3 (Figure 4). These values indicate that the drug was successfully incorporated into all formulations with minimal deviation from the intended drug load, ensuring uniformity and consistency in drug delivery across all formulations.

## In Vitro Antifungal Activity

Antifungal activity of the formulations against Candida albicans was assessed by agar well diffusion method. It was found that as the formulation concentration increased so the zone of inhibition increased. F1 displayed zone of inhibition of  $17.6 \pm 0.3$  mm; F2,  $20.5 \pm 0.4$  mm; F3,  $22.0 \pm 0.5$  mm; and F4,  $21.2 \pm 0.4$  mm (Figure 5). Greater zone of inhibition signifies that as concentration of Clotrimazole increased within the formulation, it exhibited its antifungal action better. However, F4 did not demonstrate a significantly larger zone of inhibition than F3, implying that a higher concentration of Clotrimazole may not enhance antifungal activity beyond a certain point.

### Stability Studies

3 months' stability studies were done for both accelerated ( $40^{\circ}\text{C} \pm 2^{\circ}\text{C}$  / 75% RH  $\pm 5\%$ ) and real time ( $25^{\circ}\text{C} \pm 2^{\circ}\text{C}$  / 60% RH  $\pm 5\%$ ). Upon visual inspection, it was evident that there was no change in the appearance, pH, viscosity, spreadability and drug content of the formulations over the study period. Physical and chemical changes were insignificant and all formulations sustained their antifungal efficacy. This indicates the formulations were stable for the specified storage conditions.

| Parameter               | F1             | F2             | F3             | F4             |
|-------------------------|----------------|----------------|----------------|----------------|
| Appearance              | White, smooth  | White, smooth  | White, smooth  | White, smooth  |
| рН                      | $6.1 \pm 0.02$ | $6.2 \pm 0.03$ | $6.3 \pm 0.02$ | $6.5 \pm 0.04$ |
| Viscosity (cP)          | $610 \pm 5.0$  | $750 \pm 6.0$  | $880 \pm 5.5$  | $980 \pm 6.5$  |
| Spreadability (cm)      | $7.1 \pm 0.06$ | $6.9 \pm 0.07$ | $6.5 \pm 0.08$ | $5.8 \pm 0.09$ |
| Drug Content (%)        | $98.5 \pm 0.4$ | $99.0 \pm 0.3$ | $99.3 \pm 0.3$ | $98.8 \pm 0.5$ |
| Zone of Inhibition (mm) | $17.6 \pm 0.3$ | $20.5 \pm 0.4$ | $22.0 \pm 0.5$ | $21.2 \pm 0.4$ |
| Stability (3 months)    | Stable         | Stable         | Stable         | Stable         |

Table 1: Evaluation of Formulated Suspensions (F1-F4)

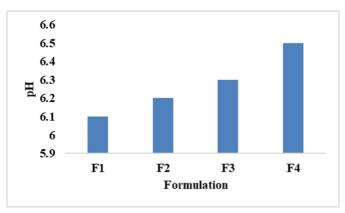



Figure 1: pH of Formulation

1200

1000

800

1000

400

200

F1 F2 F3 F4

Formulation

Figure 2: Viscosity of Formulations.

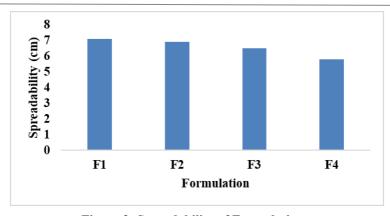



Figure 3: Spreadability of Formulations.

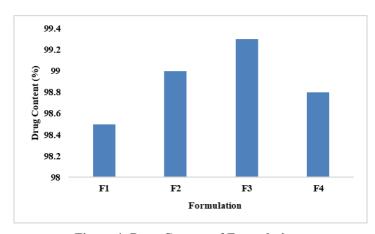



Figure 4: Drug Content of Formulations.

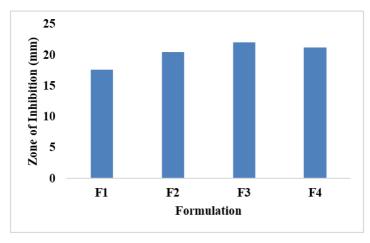



Figure 5: Zone of Inhibition of Formulations.

## 4. CONCLUSION

Evaluation of the formulation, toxicology and stability studies of the topical Clotrimazole and Zinc Oxide suspension gave positive results for all of the tested parameters. The developed formulations (F1 to F4) possessed excellent organoleptic properties, possessing a buff, white appearance and an acceptable pH, assuring compatibility with skin. These formulations had increased viscosity, suitable for topical application, and moderate spreadability for easier application to skin. High and consistent drug content was found in all formulations of drug content analysis, indicating proper incorporation of Clotrimazole. The antifungal activity of the formulations against Candida albicans was investigated in vitro using the diffusion method and formulation F3 exhibited the highest antifungal activity against this yeast with a zone of inhibition

which varied from 17.6 mm to 22.0 mm, and this confirmed the synergistic effect of Clotrimazole and the Zinc Oxide in combating fungal infections. All the formulations (F1–F4) were found to be stable when subjected to accelerated and real time stability studies with respect to 3 months' duration for appearance, pH, viscosity, drug content antifungal activity, and the optimized formulation F3 showed the best balance with respect to viscosity, spreadability, drug content and antifungal activity, and therefore it can be a good candidate as topical drug product for the treatment of fungal infections with increased skin protective properties. The long term safety and efficacy of this formulation needs to be studied further in clinical setting.

### REFERENCES

- [1] RaviKKumar VR, Rathi S, Singh S, Patel B, Singh S, Chaturvedi K, Sharma B. A Comprehensive Review on Ulcer and Their Treatment. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2023 Dec 21;39:e20230006. doi: 10.62958/j.cjap.2023.006. PMID: 38755116.
- [2] Singh, V., Arora, S., Akram, W., Alam, S., Kumari, L., Kumar, N., Kumar, B., Kumar, S., Agrawal, M., Singhal, M., Kumar, S., Singh, S., Singh, K., Saha, S., & Dwivedi, V. (2024). Involvement of molecular mechanism and biological activities of Pemirolast: A therapeutic review. New Emirates Medical Journal, 5, Article e02506882308410. https://doi.org/10.2174/0102506882308410240607053814
- [3] Rajput DS, Gupta N, Singh S, Sharma B. A Comprehensive Review: Personalized Medicine for Rare Disease Cancer Treatment. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2023 Dec 23;39:e20230008. doi: 10.62958/j.cjap.2023.008. PMID: 38830754.
- [4] Singh S, Chaurasia A, Rajput DS, Gupta N. Mucoadhesive Drug Delivery System and There Future Prospective: Are a Promising Approach for Effective Treatment? Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2023 Dec 20;39:e20230005. doi: 10.62958/j.cjap.2023.005. PMID: 38751344.
- [5] Kumar, S., Saha, S., Sharma, B., Singh, S., Shukla, P., Mukherjee, S., Agrawal, M., Singh, K., & Singh, T. (2023). The role of resveratrol in Alzheimer's disease: A comprehensive review of current research. Current Functional Foods, 2(2), Article e121223224364, 13 pages. https://doi.org/10.2174/0126668629269244231127071411
- [6] Patel S, Ismail Y, Singh S, Rathi S, Shakya S, Patil SS, Bumrela S, Jain PC, Goswami P, Singh S. Recent Innovations and Future Perspectives in Transferosomes for Transdermal Drug Delivery in Therapeutic and Pharmacological Applications. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2024 Oct 24;40:e20240031. doi: 10.62958/j.cjap.2024.031. PMID: 39442957.
- [7] Vaghela MC, Rathi S, Shirole RL, Verma J, Shaheen, Panigrahi S, Singh S. Leveraging AI and Machine Learning in Six-Sigma Documentation for Pharmaceutical Quality Assurance. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2024 Jul 18;40:e20240005. doi: 10.62958/j.cjap.2024.005. PMID: 39019923.
- [8] Patel S, Ismail Y, Singh S, Rathi S, Shakya S, Patil SS, Bumrela S, Jain PC, Goswami P, Singh S. Recent Innovations and Future Perspectives in Transferosomes for Transdermal Drug Delivery in Therapeutic and Pharmacological Applications. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2024 Oct 24;40:e20240031. doi: 10.62958/j.cjap.2024.031. PMID: 39442957.
- [9] Kumar, S., Saha, S., Pathak, D., Singh, T., Kumar, A., Singh, K., Mishra, A. K., Singh, S., & Singh, S. (2024). Cholesterol absorption inhibition by some nutraceuticals. Recent Advances in Food, Nutrition & Agriculture, 16(1), 2–11. https://doi.org/10.2174/012772574X285280240220065812
- [10] Singh, S., Chaurasia, A., Rajput, D. S., & Gupta, N. (2024). An overview on mucoadhesive buccal drug delivery systems & approaches: A comprehensive review. African Journal of Biological Sciences (South Africa), 6(5), 522–541, DOI: 10.33472/AFJBS.6.5.2024.522-541
- [11] Ravikkumar VR, Patel BD, Rathi S, Parthiban S, Upadhye MC, Shah AM, Rehan SSA, Samanta S, Singh S. Formulation and Evaluation of Drumstick Leaves Tablet as An Immunomodulator. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2024 Jun 21;40:e20240004. doi: 10.62958/j.cjap.2024.004. PMID: 38902996.
- [12] Sharma, A., Bara, G., Keshamma, E., Sharma, B., Singh, S., Singh, S. P., Parashar, T., Rathore, H. S., Sarma, S. K., & Rawat, S. (2023). Cancer biology and therapeutics: A contemporary review. Journal of Cardiovascular Disease Research, 14(10), 1229-1247.
- [13] Dewangan, H. K., Singh, S., Mishra, R., & Dubey, R. K. (2020). A review on application of nanoadjuvant as delivery system. International Journal of Applied Pharmaceutics, 12(4), 24–33. https://doi.org/10.22159/ijap.2020v12i4.36856
- [14] Singh S, Chaurasia A, Gupta N, Rajput DS. Effect of Formulation Parameters on Enalapril Maleate Mucoadhesive Buccal Tablet Using Quality by Design (QbD) Approach. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2024 Jun 27;40:e20240003. doi: 10.62958/j.cjap.2024.003. PMID: 38925868.

# Pravin P. Honmane, Swati Patil, Manojkumar Hadadare, Supriya Londhe

[15] Patel SK, Prathyusha S, Kasturi M, Godse KC, Singh R, Rathi S, Bumrela S, Singh S, Goswami P. Optimizing Irbesartan Fast Dissolving Tablets Using Natural Polysaccharides for Enhanced Drug Delivery and Patient Compliance. Int Res J Multidiscip Scope (IRJMS). 2025;6(1):1181-1190. https://doi.org/10.47857/irjms.2025.v06i01.02542