

## Impact Of Cervical Stabilisation Exercises On Posture Ailment In Text Neck Syndrome

## Shashank Baranwal<sup>1\*</sup>, Ajeet Kumar Saharan<sup>2</sup>, Shantanu Sharma<sup>3</sup>, Anuja Choudhary<sup>4</sup>, Hari Narayan Saini<sup>5</sup>, Shashank Shekhar Singh<sup>6</sup>, Vanshika<sup>7</sup>

<sup>1</sup>PhD scholar, <sup>2</sup>, <sup>3</sup> Professor, <sup>4,5,6</sup> Associate Professor, Nims College of Physiotherapy and Occupational Therapy, NIMS University Rajasthan Jaipur, India,

<sup>7</sup>Chief clinical physiotherapist at Jaipur physiotherapy center, Jaipur, Rajasthan, India

#### \*Corresponding Author:

Shashank Baranwal

PhD Scholar, Nims College of Physiotherapy & Occupational Therapy,

Nims University Rajasthan, Jaipur, India

.Cite this paper as: Shashank Baranwal, Ajeet Kumar Saharan, Shantanu Sharma, Anuja Choudhary, Hari Narayan Saini, Shashank Shekhar Singh, Vanshika, (2025) Impact Of Cervical Stabilisation Exercises On Posture Ailment In Text Neck Syndrome. *Journal of Neonatal Surgery*, 14 (32s), 8814-8821.

#### **ABSTRACT**

Background: The solubilization of poorly soluble drugs belonging to Class II of the Biopharmaceutical Classification

**Background:** Text neck syndrome, also known as forward head posture (FHP), has emerged as a common musculoskeletal disorder among smartphone users. Global prevalence ranges from 32% to 68.1%, with particularly high rates among university and medical students. This condition leads to altered cervical biomechanics, reduced craniovertebral angle (CVA), neck pain, and functional limitations.

**Objective:** To evaluate the effectiveness of cervical stabilization exercises in correcting forward head posture associated with smartphone use.

**Methods:** Evidence from clinical trials and systematic reviews was analyzed. Outcomes included changes in CVA, pain reduction measured by the Visual Analog Scale (VAS), and functional improvement using the Neck Disability Index (NDI). Interventions reviewed encompassed deep cervical flexor training, pressure biofeedback, scapular stabilization, and McKenzie-based protocols.

**Results:** Cervical stabilization programs consistently improved CVA by  $6-10^{\circ}$  and reduced pain scores by 2.5-4.5 points on the VAS within 4-8 weeks. Combined exercise protocols that integrated postural education, flexor strengthening, and functional retraining produced the most favorable results, with nearly 50% of patients shifting from moderate–severe to mild disability levels.

**Conclusion:** Cervical stabilization exercises represent an effective, evidence-based intervention for managing smartphone-related forward head posture. Their systematic implementation can significantly reduce pain and improve functional outcomes.

Keywords: text neck, forward head posture, cervical stabilization, smartphone use, craniovertebral angle

#### 1. INTRODUCTION

Text neck syndrome, also termed "tech neck," represents a postural deviation characterized by anterior translation of the head relative to the cervical spine's neutral alignment. Global prevalence data reveals alarming rates of text neck syndrome among smartphone users. Recent systematic

reviews indicate prevalence rates ranging from 32% to 68.1% across different populations. Medical students show particularly high rates, with studies reporting 68.1% prevalence in Saudi Arabia and 43.6% in Pakistan. University students demonstrate consistent patterns, with 95.6% reporting neck pain attributable to smartphone use in recent cross-sectional studies.[1,2,3]

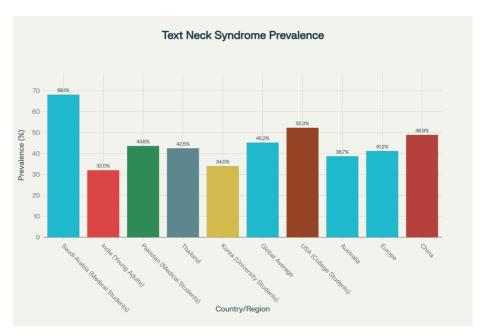
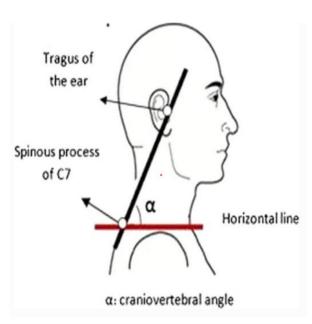




Figure 1: Global prevalence of text neck syndrome across different countries and regions among smartphone users  $\frac{[4.5,6.7]}{}$ 

This condition manifests when individuals maintain prolonged neck flexion while viewing smartphone screens, typically positioned below eye level. The pathophysiology involves increased cervical lordosis in the upper segments, compensatory kyphosis in the lower cervical spine, and altered biomechanics affecting the entire kinetic chain.[8,9,10]

The craniovertebral angle (CVA), measured between the tragus of the ear and the C7 spinous process, serves as the primary diagnostic marker for forward head posture.



**Source:** Shaghayegh Fard B, Ahmadi A, Maroufi N, Sarrafzadeh J. Evaluation of forward head posture in sitting and standing positions. Eur Spine J. 2016;25(11):3577–3582. <a href="https://doi.org/10.1007/s00586-015-4254-x">https://doi.org/10.1007/s00586-015-4254-x</a>. Erratum in: Eur Spine J. 2021;30(10):3135. [11]

Angles below 50 degrees indicate clinically significant forward head posture, correlating with increased neck pain and functional disability. [12][13] The demographic profile shows higher prevalence among females, with usage duration exceeding

4-5 hours daily correlating with increased symptom severity. Neck pain represents the most prevalent musculoskeletal complaint, affecting 85% of high smartphone users over 12-month periods. [14]

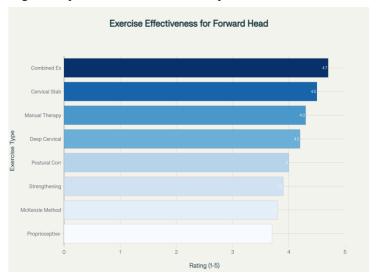



Figure 2: Effectiveness ratings of different exercise interventions for forward head posture correction

## **Biomechanical Impact of Smartphone Usage**

#### **Postural Alterations**

Smartphone usage induces significant biomechanical changes in cervical spine alignment. Research demonstrates that neck flexion angles during smartphone use frequently exceed optimal ranges, with users maintaining 15-60 degree forward head positions. The head's effective weight increases dramatically with forward positioning: at 15-degree tilt, cervical loading increases to 12kg; at 60-degree tilt, loading reaches 27kg compared to the head's natural 4-5kg weight. [21][22][23]

These postural changes result in:

Decreased cervical lordosis in lower segments

Increased upper cervical extension

Altered muscle activation patterns

Compromised respiratory function<sup>[15]</sup>

#### **Neuromuscular Consequences**

Prolonged smartphone use creates muscle imbalances affecting the cervical region. Deep cervical flexor muscles become weakened and lengthened, while superficial flexors (sternocleidomastoid and scalenes) develop increased tension and shortening. Posterior cervical muscles demonstrate increased activation to counteract forward head positioning, leading to fatigue and pain development. [16]

## **Cervical Stabilization Exercise Interventions**

## **Deep Cervical Flexor Training**

Deep cervical flexor training represents the cornerstone of cervical stabilization programs. These muscles, including longus colli and longus capitis, provide segmental stability and support proper cervical alignment. Training protocols typically involve: [5][27]

Chin tuck exercises: Performed in supine, sitting, and standing positions

Pressure biofeedback training: Using 20-30 mmHg pressure targets for precise muscle activation

Progressive resistance: Gradual increase in hold duration and repetitions

Research demonstrates that deep cervical flexor training improves craniovertebral angle by 5-8 degrees and maintains benefits during 4-week follow-up periods. The effectiveness increases when combined with pressure biofeedback units, showing superior results compared to conventional training methods.

## **Comprehensive Stabilization Programs**

Combined exercise programs demonstrate the highest effectiveness ratings (4.7/5.0) among intervention types.

These programs typically include:

#### Phase 1: Postural Awareness and Basic Stabilization (Weeks 1-2)

Postural education and ergonomic modifications

Basic chin tuck exercises: 10 repetitions, 3 sets, 3 times daily

Cervical range of motion exercises in all planes

## Phase 2: Progressive Strengthening (Weeks 3-6)

Deep cervical flexor training with biofeedback

Cervical isometric exercises in multiple directions

Scapular stabilization exercises: retraction and depression patterns

### **Phase 3: Functional Integration (Weeks 7-8)**

Dynamic cervical stabilization exercises

Proprioceptive training in functional positions

Movement pattern retraining for smartphone use

## McKenzie Method Applications [17,18,19]

The McKenzie Method focuses on directional preference exercises, emphasizing cervical extension to restore normal lordotic curves. For smartphone-related forward head posture, the protocol includes

Cervical retraction: Fundamental movement to centralize symptoms

Extension in retraction: Progressive restoration of cervical lordosis

Lateral movements: Addressing unilateral restrictions when present

Studies demonstrate moderate effectiveness (3.8/5.0 rating) with craniovertebral angle improvements of 4-7 degrees. The method's strength lies in its self-treatment approach and rapid symptom centralization in appropriate candidates.



Relationship between intervention duration and craniovertebral angle improvement in cervical stabilization studies

## **Clinical Outcomes and Evidence Synthesis**

## **Effectiveness Measures**

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 32s

Systematic analysis of cervical stabilization interventions reveals consistent positive outcomes across multiple parameters:

#### **Craniovertebral Angle Improvement:**

Studies consistently show 6-10 degree improvements in CVA measurements following 4-8 week intervention periods. The Kong et al. study demonstrated 8.2-degree improvement with modified cervical exercises performed three times daily. [1][2][4][17]

**Pain Reduction**: Visual analog scale reductions range from 2.5-4.5 points, with combined exercise programs showing superior results. Fathollahnejad et al. reported 4.1-point VAS reduction when combining stabilization exercises with manual therapy. [20]

**Functional Improvements**: Neck Disability Index scores show significant reductions, with 49.5% of participants achieving mild disability categories compared to moderate-severe classifications pre-intervention.

## **Duration and Dosage Considerations**

Optimal intervention duration appears to range from 4-8 weeks, with most studies showing plateau effects beyond 8-week periods. Exercise frequency recommendations include:

Acute Phase: 3 times daily, 10-15 repetitions per exercise

Strengthening Phase: 3-4 sessions weekly, 45-60 minutes duration

Maintenance Phase: Daily home program with weekly supervised sessions

Research indicates that exercise frequency correlates with outcomes, with three-times-daily protocols showing superior results compared to once or twice-daily regimens.

#### **Implementation Guidelines and Protocols**

## **Assessment and Screening**

Comprehensive evaluation should include:

**Postural Analysis**: Craniovertebral angle measurement using photogrammetry or clinical assessment tools. Angles below 50 degrees indicate intervention necessity. [18][19]

**Smartphone Usage Patterns**: Assessment using validated tools such as the Smartphone Addiction Scale-Short Version (SAS-SV). Scores above 40 correlate with increased musculoskeletal symptoms.

Functional Assessment: Neck Disability Index evaluation to establish baseline functional limitations and track progress.

## **Progressive Exercise Protocol**

## Week 1-2: Foundation Phase

Postural awareness education

Basic chin tuck exercises: 10 repetitions, 5-second holds

Gentle cervical range of motion

Ergonomic smartphone usage education

## Week 3-4: Stabilization Phase

Deep cervical flexor training with biofeedback

Cervical isometrics in all planes: 10-second holds Scapular retraction exercises: 3 sets of 10 repetitions

Progressive resistance training

## Week 5-6: Strengthening Phase

Advanced cervical stabilization exercises

Functional movement patterns

Dynamic postural challenges

Proprioceptive training components

## Week 7-8: Integration Phase

Real-world application exercises

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 32s

# Shashank Baranwal, Ajeet Kumar Saharan, Shantanu Sharma, Anuja Choudhary, Hari Narayan Saini, Shashank Shekhar Singh, Vanshika

Smartphone usage position training

Long-term maintenance program establishment

Follow-up assessment protocols

#### **Contraindications and Precautions**

Cervical stabilization exercises require careful screening to avoid complications:

#### **Absolute Contraindications:**

Acute cervical fracture or instability

Severe cervical myelopathy

Vertebrobasilar insufficiency

Active inflammatory conditions

#### **Relative Contraindications:**

Acute whiplash injury (first 72 hours)

Severe cervical radiculopathy with progressive neurological deficits

Uncontrolled hypertension during exercise

Severe osteoporosis affecting cervical spine

#### **Clinical Precautions:**

Monitor for symptom peripheralization during exercises

Avoid forceful passive movements

Progress gradually with resistance training

Maintain proper supervision during initial sessions

#### **Future Directions and Recommendations**

#### **Research Priorities**

Current evidence supports cervical stabilization effectiveness, but several research gaps require attention:

Longitudinal Studies: Long-term follow-up beyond 6-month periods to assess maintenance of benefits and recurrence rates.

**Comparative Effectiveness**: Head-to-head trials comparing different exercise approaches to establish optimal intervention protocols. [20, 21]

**Technology Integration**: Investigation of smartphone applications and wearable devices for real-time postural feedback and exercise compliance monitoring.

#### **Clinical Implementation Strategies**

Healthcare systems should consider:

**Prevention Programs**: Early intervention protocols for adolescents and young adults at risk for developing text neck syndrome.

Multidisciplinary Approaches: Integration of physiotherapy, ergonomic assessment, and behavioral modification strategies.

**Telehealth Delivery**: Development of remote exercise supervision and monitoring protocols to improve accessibility and compliance.

## Conclusion

Cervical stabilization exercises demonstrate robust evidence for effectively treating forward head posture associated with smartphone use. Combined exercise programs incorporating deep cervical flexor training, postural correction, and scapular stabilization show the highest success rates, with clinically significant improvements in craniovertebral angle and pain reduction achievable within 4-8 weeks. Healthcare providers should prioritize early identification and treatment of forward head posture using validated assessment tools and structured exercise protocols. The evidence strongly supports cervical stabilization exercises as first-line treatment for forward head posture in smartphone users, with potential for significant functional improvement and pain reduction when implemented systematically.

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 32s

#### REFERENCES

- [1] Deivendran, G., Kanagaraj, T. S., Leelabai, B. S., Raju, P. T., Kannan, P., Ayyavoo, S., & Periasamy, P. (2025). Association Between Screen Time and Musculoskeletal Pain Among Young Adults: A Cross-Sectional Study from SRM Medical College, Tamil Nadu. Journal of pharmacy & bioallied sciences, 17(2), 87–89. https://doi.org/10.4103/jpbs.jpbs 943 25
- [2] Salameh, M. A., Boyajian, S. D., Amaireh, E. A., Jamal, B., Alrfooh, H., AbuKhalaf, K., Al-Tanbouz, H. D., & Alzyoud, K. (2024). Prevalence of text neck syndrome, its impact on neck dysfunction, and its associated factors among medical students: A cross-sectional study. Work (Reading, Mass.), 79(3), 1111. https://doi.org/10.3233/WOR-230678
- [3] Kong, S., & Kim, M. (2017). The effect of modified cervical exercise on smartphone users with forward head posture. Journal of Physical Therapy Science, 29(2), 328. https://doi.org/10.1589/jpts.29.328
- [4] The effect of modified cervical exercise on smartphone users with forward head posture, Yong- Soo Kong, Yu-Mi Kim, Je-myung Shim, 2017 Volume 29 Issue 2 Pages 328-331, J. Phys. Ther. Sci. 29: 328-331, 2017
- [5] Lee, N. K., Jung, S. I., Lee, D. Y., & Kang, K. W. (2017). Effects of Exercise on Cervical Angle and Respiratory Function in Smartphone Users. Osong Public Health and Research Perspectives, 8(4), 271. https://doi.org/10.24171/j.phrp.2017.8.4.07
- [6] Vijay V, N Senthil kumar, Kumerasan A et. al. Efficacy of Cervical Spinal Stabilization Exercise on Reducing Pain for People with Cervical Spondylosis. Indian Journal of Physiotherapy and Occupational Therapy / Volume 18, Year 2024
- [7] Shivangi, Sumedha Bhatia, Shyamal Koley. Digital habits and postural impact: a study on prevalence of forward head posture among collegiate smartphone users. Int J Health Sci Res. 2024; 14(9):265-271. DOI: 10.52403/ijhsr.20240935
- [8] Pallabi Goswami a, Wankupar Wankhar b, Binod C. Sarma The Impact of Faulty Posture on Neck Pain in Prolong Smartphone UserseA Literature Review; INTERNATIONAL JOURNAL OF HEALTH AND ALLIED SCIENCES 2024;13:144e150
- [9] Elvan, A., Cevik, S., Vatansever, K., & Erak, I. (2024). The association between mobile phone usage duration, neck muscle endurance, and neck pain among university students. Scientific Reports, 14(1), 1-7. https://doi.org/10.1038/s41598-024-71153-4
- [10] Shaghayegh Fard B, Ahmadi A, Maroufi N, Sarrafzadeh J. Evaluation of forward head posture in sitting and standing positions. Eur Spine J. 2016;25(11):3577–3582. https://doi.org/10.1007/s00586-015-4254-x. Erratum in: Eur Spine J. 2021;30(10):3135.
- [11] Mahmoud, N. F., Hassan, K. A., Abdelmajeed, S. F., Moustafa, I. M., & Silva, A. G. (2019). The Relationship Between Forward Head Posture and Neck Pain: A Systematic Review and Meta-Analysis. Current Reviews in Musculoskeletal Medicine, 12(4), 562. https://doi.org/10.1007/s12178-019-09594-y
- [12] Sterns, R. H., Rondon-Berrios, H., Adrogué, H. J., Berl, T., Burst, V., Cohen, D. M., Christ-Crain, M., Cuesta, M., Decaux, G., Emmett, M., Garrahy, A., Gankam-Kengne, F., Hix, J. K., Hoorn, E. J., Kamel, K. S., Madias, N. E., Peri, A., Refardt, J., Rosner, M. H., . . . Verbalis, J. G. (2023). Treatment Guidelines for Hyponatremia: Stay the Course. Clinical Journal of the American Society of Nephrology: CJASN, 19(1), 129. https://doi.org/10.2215/CJN.0000000000000244
- [13] Deivendran G, Kanagaraj TS, Leelabai BS, Raju PT, Kannan P, Ayyavoo S, Periasamy P. Association Between Screen Time and Musculoskeletal Pain Among Young Adults: A Cross-Sectional Study from SRM Medical College, Tamil Nadu. J Pharm Bioallied Sci. 2025 Apr-Jun;17(2):87-89. doi: 10.4103/jpbs.jpbs\_943\_25. Epub 2025 Jul 23. PMID: 40860003; PMCID: PMC12373370.
- [14] Jung, S. I., Lee, N. K., Kang, K. W., Kim, K., & Lee, D. Y. (2016). The effect of smartphone usage time on posture and respiratory function. Journal of Physical Therapy Science, 28(1), 186. https://doi.org/10.1589/jpts.28.186
- [15] Aydoğmuş H, Şenocak Ö, Döner SM, Keskinoğlu P. Investigation of the effectiveness of neck stabilization exercises in patients with chronic neck pain: A randomized, single-blind clinical, controlled study. Turk J Phys Med Rehabil. 2022 Aug 25;68(3):364-371. doi: 10.5606/tftrd.2022.8481. PMID: 36475101; PMCID: PMC9706793
- [16] https://www.spine-health.com/wellness/exercise/7-mckenzie-method-exercises-neck-pain-and-arm-pain (assessed on 24/08/2025)
- [17] Van Niekerk S-M, Louw Q, Vaughan C, Grimmer-Somers K, Schreve K (2008) Photographic measurement of upper-body sitting posture of high school students: a reliability and validity study. BMC Musculoskelet Disord

Shashank Baranwal, Ajeet Kumar Saharan, Shantanu Sharma, Anuja Choudhary, Hari Narayan Saini, Shashank Shekhar Singh, Vanshika

9(1):113

- [18] Amin DI, Mohamed GI, ElMeligie MM. Effectiveness of McKenzie exercises plus stabilization exercises versus McKenzie exercises alone on disability, pain, and range of motion in patients with nonspecific chronic neck pain: A randomized clinical trial. J Back Musculoskelet Rehabil. 2024;37(6):1507-1517. doi: 10.3233/BMR-230352. PMID: 39031338; PMCID: PMC11613090.
- [19] Seyda Toprak Celenay, Turkan Akbayrak, and Derya Ozer Kayal; A Comparison of the Effects of Stabilization Exercises Plus Manual Therapy to Those of Stabilization Exercises Alone in Patients With Nonspecific Mechanical Neck Pain: A Randomized Clinical Trial; Journal of Orthopaedic & Sports Physical Therapy 2016 46:2, 44-55
- [20] Balthillaya GM, Parsekar SS, Gangavelli R, Prabhu N, Bhat SN, Rao BK. Effectiveness of posture-correction interventions for mechanical neck pain and posture among people with forward head posture: protocol for a systematic review. BMJ Open. 2022 Mar 9;12(3):e054691. doi: 10.1136/bmjopen-2021-054691. PMID: 35264350; PMCID: PMC8915312.