Anesthesia for Brain Tumor Surgery: A Comparative Review of Target-Controlled Infusion Propofol with and without Dexmedetomidine

Authors

  • Christian Reza Wibowo
  • Hamzah
  • Prihatma Kriswidyatomo
  • Bambang Pujo Semedi
  • Kohar Hari Santoso

DOI:

https://doi.org/10.52783/jns.v14.3221

Keywords:

Target-Controlled Infusion, Propofol, Dexmedetomidine, Brain Tumor Surgery, Neuroanesthesia.

Abstract

Brain tumor surgeries pose significant challenges due to high morbidity and mortality rates, often resulting in extended intensive care unit stays and complications from neuroinflammation, such as postoperative cognitive dysfunction. This review compares the efficacy of two anesthesia techniques: target-controlled infusion propofol combined with dexmedetomidine versus propofol alone. It explores the impact of these approaches on immediate and long-term patient outcomes, focusing on inflammatory markers, cognitive function, cost-effectiveness, and the risk of propofol-related infusion syndrome. Total intravenous anesthesia with target-controlled infusion of propofol is preferred for its effectiveness in facilitating faster neurological recovery, reducing neuroinflammatory markers like interleukin-6 and S100B, promoting brain relaxation, and lowering intracranial pressure while preserving cognitive function. Although propofol is effective as a single hypnotic agent when used with opioids and muscle relaxants, there is increasing interest in dexmedetomidine as an adjunct. The combination of dexmedetomidine with propofol may enhance neuroprotection, further reduce inflammation, and lower the incidence of postoperative cognitive dysfunction while providing anesthetic-sparing effects that can reduce costs. Using dexmedetomidine can also mitigate the risk of propofol-related infusion syndrome by lowering propofol consumption, thus reducing the likelihood of lactic acidosis during lengthy surgeries. While initial medication costs may increase with dexmedetomidine, it could lead to long-term savings by minimizing complications and intensive care unit stays. The choice between propofol alone or in combination with dexmedetomidine should be tailored to individual patient needs and institutional resources. Further research is needed to understand the long-term outcomes and economic implications of this combination in brain tumor surgeries.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

K. R. Phillips, A. Filippidis, C. E. Mackel, A. Enriquez-Marulanda, and R. A. Vega, “Octogenarian Brain Tumor Registry: Single-Institution Surgical Outcomes and Mortality Study,” Brain Tumor Res Treat, vol. 11, no. 2, pp. 114–122, Apr. 2023.

K. A. Henriksen et al., “Thirty-day surgical morbidity and risk factors in pediatric brain tumor surgery: a 10-year nationwide retrospective study,” J. Neurosurg. Pediatr., vol. 33, no. 2, pp. 165–173, 2024, doi: https://doi.org/10.3171/2023.9.PEDS23351.

O. Solheim, A. S. Jakola, S. Gulati, and T. B. Johannesen, “Incidence and causes of perioperative mortality after primary surgery for intracranial tumors: a national, population-based study: Clinical article,” J. Neurosurg. JNS, vol. 116, no. 4, pp. 825–834, 2012, doi: https://doi.org/10.3171/2011.12.JNS11339.

S. Missios and K. Bekelis, “Drivers of hospitalization cost after craniotomy for tumor resection: creation and validation of a predictive model,” BMC Health Serv. Res., vol. 15, no. 1, p. 85, 2015, doi: 10.1186/s12913-015-0742-2.

A. L. C. V.-A. Paiva João Luiz; Lovato, Renan Maximilian; Costa, Guilherme Henrique Ferreira da; Veiga, José Carlos Esteves, “An economic study of neuro-oncological patients in a large developing country: a cost analysis TT - Um estudo de análise econômica dos pacientes neuro-oncológicos em um grande país em desenvolvimento: uma análise de custos,” Arq Neuropsiquiatr, vol. 80, no. 11, pp. 1149–1158, 2022, doi: 10.1055/s-0042-1758649.

J. Jonathan, K. M. Wijaya, T. K. P. Johansyah, F. P. Sari, K. Satrio, and I. C. Jobul, “Propofol-based Anesthesia versus Volatile Anesthesia on Brain Relaxation in Neurosurgery: A Meta-analysis of Randomized Controlled Trials,” Neurol. Spinale Med. Chir., vol. 7, no. 1, 2024.

S. Niewiadomski, K. Chwojnicki, and R. Owczuk, “Is target-controlled infusion better than manual controlled infusion during TIVA for elective neurosurgery? Results of a single-centre pilot study,” Neurol. Neurochir. Pol., vol. 58, no. 3, pp. 331–337, 2024, doi: {}.

K. Wang et al., “Effects of dexmedetomidine on perioperative stress, inflammation, and immune function: systematic review and meta-analysis,” Br. J. Anaesth., vol. 123, no. 6, pp. 777–794, Dec. 2019, doi: 10.1016/j.bja.2019.07.027.

B. Li et al., “Anti-inflammatory Effects of Perioperative Dexmedetomidine Administered as an Adjunct to General Anesthesia: A Meta-analysis,” Sci. Rep., vol. 5, no. 1, p. 12342, 2015, doi: 10.1038/srep12342.

J. Steinmetz, K. B. Christensen, T. Lund, N. Lohse, L. S. Rasmussen, and the I. Group, “Long-term Consequences of Postoperative Cognitive Dysfunction,” Anesthesiology, vol. 110, no. 3, 2009.

Y. J. Choi, M. C. Kim, Y. J. Lim, S. Z. Yoon, S. M. Yoon, and H. R. Yoon, “Propofol Infusion Associated Metabolic Acidosis in Patients Undergoing Neurosurgical Anesthesia: A Retrospective Study,” J Korean Neurosurg Soc, vol. 56, no. 2, pp. 135–140, Aug. 2014, doi: 10.3340/jkns.2014.56.2.135.

A. M. Slupe and J. R. Kirsch, “Effects of anesthesia on cerebral blood flow, metabolism, and neuroprotection,” J. Cereb. Blood Flow Metab., vol. 38, no. 12, pp. 2192–2208, Jul. 2018, doi: 10.1177/0271678X18789273.

J. Chui, R. Mariappan, J. Mehta, P. Manninen, and L. Venkatraghavan, “Comparison of propofol and volatile agents for maintenance of anesthesia during elective craniotomy procedures: systematic review and meta-analysis,” Can. J. Anesth. Can. d’anesthésie, vol. 61, no. 4, pp. 347–356, 2014, doi: 10.1007/s12630-014-0118-9.

N. Kannabiran and P. Bidkar, “Total Intravenous Anesthesia in Neurosurgery,” J. Neuroanaesth. Crit. Care, vol. 05, Oct. 2018, doi: 10.1055/s-0038-1673544.

C. D. Cole, O. N. Gottfried, D. K. Gupta, and W. T. Couldwell, “Total Intravenous Anesthesia: Advantages For Intracranial Surgery,” Oper. Neurosurg., vol. 61, no. 5, 2007.

A. Nguyen et al., “Neurosurgical Anesthesia: Optimizing Outcomes with Agent Selection,” 2023. doi: 10.3390/biomedicines11020372.

A. P. Somawi, N. M. Rehatta, P. Kriswidyatomo, K. H. Santoso, Hamzah, and P. Lestari, “Effect of Propofol TIVA Compared Sevoflurane Inhalation Anesthesia on Triglyceride Levels After Elective Craniotomy Surgery,” Pharmacogn. J., vol. 16, no. 3, 2024.

M. M. R. F. Struys, T. De Smet, J. (Iain) B. Glen, H. E. M. Vereecke, A. R. Absalom, and T. W. Schnider, “The History of Target-Controlled Infusion,” Anesth. Analg., vol. 122, no. 1, 2016.

A. F. Nimmo et al., “Guidelines for the safe practice of total intravenous anaesthesia (TIVA),” Anaesthesia, vol. 74, no. 2, pp. 211–224, Feb. 2019, doi: https://doi.org/10.1111/anae.14428.

A. R. Absalom, J. (Iain) B. Glen, G. J. C. Zwart, T. W. Schnider, and M. M. R. F. Struys, “Target-Controlled Infusion: A Mature Technology,” Anesth. Analg., vol. 122, no. 1, 2016.

X. Wang, T. Wang, Z. Tian, D. Brogan, J. Li, and Y. Ma, “Asleep-awake-asleep regimen for epilepsy surgery: a prospective study of target-controlled infusion versus manually controlled infusion technique,” J. Clin. Anesth., vol. 32, pp. 92–100, 2016, doi: https://doi.org/10.1016/j.jclinane.2015.11.014.

J. Szederjesi, “Target Controlled Infusion: An Anaesthetic Technique Brought in ICU,” J. Crit. Care Med., vol. 8, no. 1, pp. 3–5, 2022, doi: doi:10.2478/jccm-2022-0001.

I. B. K. Sutawan, I. P. Suarjaya, S. Saleh, and A. Wargahadibrata, “Konsep Dasar Target Controlled Infusion (TCI) Propofol dan Penggunaannya pada Neuroanestesi,” J. Neuroanestesi Indones., vol. 6, pp. 58–69, Feb. 2017, doi: 10.24244/jni.vol6i1.40.

L. Ferreira Laso et al., “Inducción con propofol: infusión controlada por objetivo o manual. Un estudio observacional,” Rev. Colomb. Anestesiol., vol. 44, no. 4, pp. 272–277, 2016, doi: https://doi.org/10.1016/j.rca.2016.06.002.

V. Vucicevic, B. Milakovic, M. Tesic, J. Djordjevic, and S. Djuranovic, “Manual versus target-controlled infusion of balanced propofol during diagnostic colonoscopy: A prospective randomized controlled trial,” Srp. Arh. Celok. Lek., vol. 144, pp. 514–520, Sep. 2016, doi: 10.2298/SARH1610514V.

K. Peng, S. Wu, H. Liu, and F. Ji, “Dexmedetomidine as an anesthetic adjuvant for intracranial procedures: Meta-analysis of randomized controlled trials,” J. Clin. Neurosci., vol. 21, no. 11, pp. 1951–1958, Nov. 2014, doi: 10.1016/j.jocn.2014.02.023.

V. K. Srivastava, A. Mishra, S. Agrawal, S. Kumar, S. Sharma, and R. Kumar, “Comparative Evaluation of Dexmedetomidine and Magnesium Sulphate on Propofol Consumption, Haemodynamics and Postoperative Recovery in Spine Surgery: A Prospective, Randomized, Placebo Controlled, Double-blind Study,” Adv Pharm Bull, vol. 6, no. 1, pp. 75–81, Mar. 2016, doi: 10.15171/apb.2016.012.

C. Huang, R. Yang, X. Xie, H. Dai, and L. Pan, “Effects of dexmedetomidine on early postoperative cognitive function and postoperative inflammatory response: a systematic review and network meta-analysis,” Front. Neurol., vol. 15, Aug. 2024, doi: 10.3389/fneur.2024.1422049.

A. Alam, Z. Hana, Z. Jin, K. C. Suen, and D. Ma, “Surgery, neuroinflammation and cognitive impairment,” eBioMedicine, vol. 37, pp. 547–556, Nov. 2018, doi: 10.1016/j.ebiom.2018.10.021.

S. Zhang, Q. Chen, L. Xian, Y. Chen, L. Wei, and S. Wang, “Acute subdural haematoma exacerbates cerebral blood flow disorder and promotes the development of intraoperative brain bulge in patients with severe traumatic brain injury,” Eur. J. Med. Res., vol. 28, no. 1, p. 138, 2023, doi: 10.1186/s40001-023-01100-y.

T. Li, X. Chen, C. Zhang, Y. Zhang, and W. Yao, “An update on reactive astrocytes in chronic pain,” J. Neuroinflammation, vol. 16, no. 1, p. 140, 2019, doi: 10.1186/s12974-019-1524-2.

X. Gou et al., “The Roles of High Mobility Group Box 1 in Cerebral Ischemic Injury,” Front. Cell. Neurosci., vol. 14, no. December, pp. 1–17, 2020, doi: 10.3389/fncel.2020.600280.

G. U. Roh, Y. Song, J. Park, Y. M. Ki, and D. W. Han, “Effects of propofol on the inflammatory response during robot-assisted laparoscopic radical prostatectomy: a prospective randomized controlled study,” Sci. Rep., vol. 9, 2019.

A. Ghomeishi, A. Mohtadi, K. Behaeen, S. Nesioonpour, N. Bakhtiari, and F. Fahlyani, “Comparison of the Effect of Propofol and Dexmedetomidine on Hemodynamic Parameters and Stress Response Hormones During Laparoscopic Cholecystectomy Surgery,” Anesthesiol. Pain Med., vol. 11, Dec. 2021, doi: 10.5812/aapm.119446.

W. Xu et al., “Effect of dexmedetomidine on postoperative systemic inflammation and recovery in patients undergoing digest tract cancer surgery: A meta-analysis of randomized controlled trials,” Front. Oncol., vol. 12, no. September, pp. 1–14, 2022, doi: 10.3389/fonc.2022.970557.

N. M. H. Bulow et al., “Dexmedetomidine decreases the inflammatory response to myocardial surgery under mini-cardiopulmonary bypass,” Brazilian J. Med. Biol. Res., vol. 49, no. 4, pp. 1–7, 2016, doi: 10.1590/1414-431X20154646.

L. Wang, A. Zhang, W. Liu, H. Liu, F. Su, and L. Qi, “Effects of dexmedetomidine on perioperative stress response, inflammation and immune function in patients with different degrees of liver cirrhosis,” Exp Ther Med, vol. 16, no. 5, pp. 3869–3874, 2018, doi: 10.3892/etm.2018.6665.

H.-X. Yuan, L.-N. Zhang, G. Li, and L. Qiao, “ Brain protective effect of dexmedetomidine vs propofol for sedation during prolonged mechanical ventilation in non-brain injured patients ,” World J. Psychiatry, vol. 14, no. 3, pp. 370–379, 2024, doi: 10.5498/wjp.v14.i3.370.

I. Rundshagen, “Postoperativekognitive dysfunktion,” Dtsch. Arztebl. Int., vol. 111, no. 8, pp. 119–125, 2014, doi: 10.3238/arztebl.2014.0119.

J. Zhu, W. Wang, and H. Shi, “The Association between Postoperative Cognitive Dysfunction and Cerebral Oximetry during Geriatric Orthopedic Surgery: A Randomized Controlled Study,” Biomed Res. Int., vol. 2021, no. 1, p. 5733139, Jan. 2021, doi: https://doi.org/10.1155/2021/5733139.

M. C. Kapoor, “Neurological Dysfunction after Cardiac Surgery and Cardiac Intensive Care Admission: A Narrative Review Part 1: The Problem; Nomenclature; Delirium and Postoperative Neurocognitive Disorder; and the Role of Cardiac Surgery and Anesthesia,” Ann. Card. Anaesth., vol. 23, no. 4, 2020.

T. G. Monk et al., “Predictors of cognitive dysfunction after major noncardiac surgery,” Anesthesiology, 2008, doi: 10.1097/01.anes.0000296071.19434.1e.

S. M. Yuan and H. Lin, “Postoperative cognitive dysfunction after coronary artery bypass grafting,” Brazilian J. Cardiovasc. Surg., vol. 34, no. 1, pp. 76–84, 2019, doi: 10.21470/1678-9741-2018-0165.

Y. Wang, H.-J. He, and W. Ouyang, “Increased Expression of Toll-Like Receptor 4 on Neurons After Surgery in Aged Rats,” CNS Neurosci. Ther., vol. 19, no. 5, pp. 358–360, May 2013, doi: https://doi.org/10.1111/cns.12090.

J. F. Foley, “Inflammatory Decline,” Sci. Signal., vol. 3, no. 151, pp. ec368–ec368, Dec. 2010, doi: 10.1126/scisignal.3151ec368.

W. Yang, L.-S. Kong, X.-X. Zhu, R.-X. Wang, Y. Liu, and L.-R. Chen, “Effect of dexmedetomidine on postoperative cognitive dysfunction and inflammation in patients after general anaesthesia: A PRISMA-compliant systematic review and meta-analysis,” Medicine (Baltimore)., vol. 98, no. 18, 2019.

C. Tang, Y. Li, and Y. Lai, “Intraoperative Dexmedetomidine for Prevention of Postoperative Cognitive Dysfunction and Delirium in Elderly Patients with Lobectomy: A Propensity Score-Matched, Retrospective Study,” Int. J. Gen. Med., vol. Volume 17, no. June, pp. 2673–2680, 2024, doi: 10.2147/ijgm.s456762.

L.-J.-Z. Shao, F.-S. Xue, R.-J. Guo, and L. Zheng, “Comparing the effects of different drugs on postoperative cognitive dysfunction in elderly patients,” Chin. Med. J. (Engl)., vol. 132, no. 8, 2019.

M. ter Laan, S. Roelofs, E. M. M. Adang, and R. H. M. A. Bartels, “Reducing the burden of brain tumor surgery,” Acta Neurochir. (Wien)., vol. 163, no. 7, pp. 1879–1882, 2021, doi: 10.1007/s00701-020-04543-y.

T. Tunthanathip et al., “Quality of life, out-of-pocket expenditures, and indirect costs among patients with the central nervous system tumors in Thailand,” J. Neurosci. Rural Pract., vol. 13, doi: 10.25259/JNRP-2022-3-45.

A. L. Campos Paiva, J. L. Vitorino-Araujo, R. M. Lovato, G. H. F. da Costa, and J. C. Esteves Veiga, “An economic study of neuro-oncological patients in a large developing country: a cost analysis,” Arq. Neuropsiquiatr., vol. 80, no. 11, pp. 1149–1158, 2022, doi: 10.1055/s-0042-1758649.

M. Le Guen et al., “Dexmedetomidine Reduces Propofol and Remifentanil Requirements During Bispectral Index-Guided Closed-Loop Anesthesia: A Double-Blind, Placebo-Controlled Trial,” Anesth. Analg., vol. 118, no. 5, 2014.

S. Sen, J. Chakraborty, S. Santra, P. Mukherjee, and B. Das, “The effect of dexmedetomidine infusion on propofol requirement for maintenance of optimum depth of anaesthesia during elective spine surgery,” Indian J. Anaesth., vol. 57, no. 4, 2013.

J. H. Sim, H. J. Yu, and S. T. Kim, “The effects of different loading doses of dexmedetomidine on sedation,” Korean J Anesth., vol. 67, no. 1, pp. 8–12, Jul. 2014, doi: 10.4097/kjae.2014.67.1.8.

A. Y. A. Yıldırım Ar, “The effects of dexmedetomidine on hemodynamic parameters and intubation conditions,” Haydarpasa Numune Train. Res. Hosp. Med. J., vol. 59, no. 3, pp. 203–210, 2018, doi: 10.14744/hnhj.2018.44712.

M. D. Boone, B. Sites, F. M. von Recklinghausen, A. Mueller, A. H. Taenzer, and S. Shaefi, “Economic Burden of Postoperative Neurocognitive Disorders Among US Medicare Patients,” JAMA Netw. Open, vol. 3, no. 7, pp. e208931–e208931, Jul. 2020, doi: 10.1001/jamanetworkopen.2020.8931.

E. National Academies of Sciences and Medicine, Families Caring for an Aging America. Washington, DC: The National Academies Press, 2016. doi: 10.17226/23606.

L. Sattar et al., “Comparison Between Dexmedetomidine and Propofol for Sedation on Outcomes After Cardiac Surgery in Patients Requiring Mechanical Ventilation: A Meta-Analysis of Randomized-Control Trials,” Cureus, vol. 15, no. 7, p. e42212, 2023, doi: 10.7759/cureus.42212.

J. Aggarwal, J. Lustrino, J. Stephens, D. Morgenstern, and W. Y. Tang, “Cost-minimization analysis of dexmedetomidine compared to other sedatives for short-term sedation during mechanical ventilation in the United States,” Clin. Outcomes Res., vol. 12, pp. 389–410, 2020, doi: 10.2147/CEOR.S242994.

W.-X. Li et al., “Effects of propofol, dexmedetomidine, and midazolam on postoperative cognitive dysfunction in elderly patients: a randomized controlled preliminary trial,” Chin. Med. J. (Engl)., vol. 132, no. 4, 2019.

N.-H. W. Loh and P. Nair, “Propofol infusion syndrome,” Contin. Educ. Anaesth. Crit. Care Pain, vol. 13, no. 6, pp. 200–202, Dec. 2013, doi: 10.1093/bjaceaccp/mkt007.

A. Singh and A. P. Anjankar, “Propofol-Related Infusion Syndrome: A Clinical Review,” Cureus, vol. 14, no. 10, p. e30383, 2022, doi: 10.7759/cureus.30383.

S. Hemphill, L. McMenamin, M. C. Bellamy, and P. M. Hopkins, “Propofol infusion syndrome: a structured literature review and analysis of published case reports,” Br. J. Anaesth., vol. 122, no. 4, pp. 448–459, Apr. 2019, doi: 10.1016/j.bja.2018.12.025.

A. Guntani, R. Yoshiga, and S. Mii, “A case of suspected propofol infusion syndrome after abdominal aortic aneurysm surgery,” Surg. Case Reports, vol. 6, no. 1, p. 188, 2020, doi: 10.1186/s40792-020-00946-2.

R. M. Mathias, N. Shaikh, A. Chanda, Q. Zeeshan, and S. Mirishova, “A rare case of propofol related infusion syndrome in a neurosurgical patient,” Qatar Med. J., vol. 2019, no. 2-Qatar Critical Care Conference Proceedings, 2020, doi: https://doi.org/10.5339/qmj.2019.qccc.59.

J. Chen, J. Zhou, Z. Chen, Y. Huang, and H. Jiang, “Efficacy and Safety of Dexmedetomidine Versus Propofol for the Sedation of Tube-Retention After Oral Maxillofacial Surgery,” J. Oral Maxillofac. Surg., vol. 72, no. 2, pp. 285.e1-285.e7, Feb. 2014, doi: 10.1016/j.joms.2013.10.006.

K. Miyamoto et al., “Effect of Dexmedetomidine on Lactate Clearance in Patients With Septic Shock: A Subanalysis of a Multicenter Randomized Controlled Trial,” Shock, vol. 50, no. 2, 2018.

S. Jeker, M. J. Beck, and T. O. Erb, “Special Anaesthetic Considerations for Brain Tumour Surgery in Children,” 2022. doi: 10.3390/children9101539.

F. Bilotta, C. Guerra, and G. Rosa, “Update on anesthesia for craniotomy,” Curr. Opin. Anesthesiol., vol. 26, no. 5, 2013.

T. Keown, S. Bhangu, and S. Solanki, “Anaesthesia for Craniotomy and Brain Tumour Resection,” Anesth. Tutor. Week, no. January, pp. 1–7, 2022.

J. Saito, J. Masters, K. Hirota, and D. Ma, “Anesthesia and brain tumor surgery: technical considerations based on current research evidence,” Curr. Opin. Anesthesiol., vol. 32, no. 5, 2019.

Downloads

Published

2025-04-08

How to Cite

1.
Wibowo CR, na H, Kriswidyatomo P, Semedi BP, Santoso KH. Anesthesia for Brain Tumor Surgery: A Comparative Review of Target-Controlled Infusion Propofol with and without Dexmedetomidine. J Neonatal Surg [Internet]. 2025Apr.8 [cited 2025Oct.23];14(6):264-73. Available from: https://mail.jneonatalsurg.com/index.php/jns/article/view/3221

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.