Molecular Dynamics Simulation and Structural Insights into The SMN1 Protein Involved in the Pathogenesis of Spinal Muscular Atrophy
DOI:
https://doi.org/10.63682/jns.v14i13S.3935Keywords:
Spinal Muscular Atrophy, Survival Motor Neuron, Molecular Dynamics Simulation, Root Mean Square Deviation, Root Mean Square Fluctuation, Radius of GyrationAbstract
Spinal muscular atrophy (SMA) is an an autosomal recessive inherited neuromuscular condition distinguished by the deterioration of alpha motor neurons within the spinal cord. This degeneration leads to a gradual onset of muscle weakness and paralysis primarily affecting muscles close to the body's center. The SMA is categorized into four severity grades (SMA I, SMA II, SMA III and SMA IV) determined by the age of onset and the level of motor function attained. This condition arises from homozygous mutations in the survival motor neuron 1 (SMN1) gene, with diagnostic tests typically revealing homozygous deletion of SMN1 exon 7 in the majority of patients. Herein, we have applied bioinformatics approaches to predict the structure of SMN1 protein (using AlphaFold, I-TASSER and RoseTTAFold), structure validation (PSVS v1.5, PROCHECK and ProSA-web) and molecular dynamics (MD) simulation using GROMACS 2022.3 at 100 ns (nanoseconds) to analyze the Root Mean Square Deviation, Root Mean Square Fluctuation, and Radius of Gyration. MD results clearly indicate that RoseTTAFold predicted structure of SMN1 is highly stable and consistent.
Downloads
Metrics
References
Alam, M. M., Saikat, A. S. M., & Uddin, M. E. (2023). Bioinformatics Approaches for Structural and Functional Annotation of an Uncharacterized Protein of Helicobacter pylori. Engineering Proceedings, 37(1), 61. https://doi.org/10.3390/ECP2023-14671
Al-Taie, A., & Köseoğlu, A. (2023). Evaluation of the therapeutic efficacy and tolerability of current drug treatments on the clinical outcomes of paediatric spinal muscular atrophy type 1: A systematic review. Paediatric Respiratory Reviews.https://doi.org/10.1016/j.prrv.2023.06.004
Angilletta, I., Ferrante, R., Giansante, R., Lombardi, L., Babore, A., Dell’Elice, A., ... & Rossi, C. (2023). Spinal muscular atrophy: an evolving scenario through new perspectives in diagnosis and advances in therapies. International Journal of Molecular Sciences, 24(19), 14873. https://doi.org/10.3390/ijms241914873
Aragon-Gawinska, K., Mouraux, C., Dangouloff, T., & Servais, L. (2023). Spinal muscular atrophy treatment in patients identified by newborn screening—a systematic review. Genes, 14(7), 1377. https://doi.org/10.3390/genes14071377
Ashiru, M. A., Ogunyemi, S. O., Temionu, O. R., Ajibare, A. C., Cicero-Mfon, N. C., Ihekuna, O. A., ... & Adeyemi, A. O. (2023). Identification of EGFR inhibitors as potential agents for cancer therapy: pharmacophore-based modeling, molecular docking, and molecular dynamics investigations. Journal of Molecular Modeling, 29(5), 128. https://doi.org/10.1007/s00894-023-05531-6
Babić, M., Banović, M., Berečić, I., Banić, T., Babić Leko, M., Ulamec, M., ... & Šimić, G. (2023). Molecular biomarkers for the diagnosis, prognosis, and pharmacodynamics of spinal muscular atrophy. Journal of clinical medicine, 12(15), 5060. https://doi.org/10.3390/jcm12155060
Baek, M., McHugh, R., Anishchenko, I., Jiang, H., Baker, D., & DiMaio, F. (2024). Accurate prediction of protein–nucleic acid complexes using RoseTTAFoldNA. Nature methods, 21(1), 117-121. https://doi.org/10.1038/s41592-023-02086-5
Belter, L., Peterson, I., & Jarecki, J. (2023). Evaluating perceived fatigue within an adult spinal muscular atrophy population. Neurology and Therapy, 12(6), 2161-2175. https://doi.org/10.1007/s40120-023-00552-y
Cacheiro, P., Lawson, S., Van den Veyver, I. B., Marengo, G., Zocche, D., Murray, S. A., ... & Smedley, D. (2024). Lethal phenotypes in Mendelian disorders. Genetics in Medicine, 26(7), 101141. https://doi.org/10.1016/j.gim.2024.101141
Chiriboga, C. A., Bruno, C., Duong, T., Fischer, D., Mercuri, E., Kirschner, J., ... & Muntoni, F. (2023). Risdiplam in patients previously treated with other therapies for spinal muscular atrophy: an interim analysis from the JEWELFISH study. Neurology and therapy, 12(2), 543-557. https://doi.org/10.1007/s40120-023-00444-1
Chong, L. C., Gandhi, G., Lee, J. M., Yeo, W. W. Y., & Choi, S. B. (2021). Drug discovery of spinal muscular atrophy (SMA) from the computational perspective: a comprehensive review. International Journal of Molecular Sciences, 22(16), 8962. https://doi.org/10.3390/ijms22168962
Derry, A., & Altman, R. B. (2023). COLLAPSE: A representation learning framework for identification and characterization of protein structural sites. Protein Science, 32(2), e4541. https://doi.org/10.1002/pro.4541
Farrar, M. A., & Kiernan, M. C. (2015). The genetics of spinal muscular atrophy: progress and challenges. Neurotherapeutics, 12(2), 290-302.https://doi.org/10.1007/s13311-014-0314-x
Fasimoye, R. Y., Spencer, R. E. B., Soto-Martin, E., Eijlers, P., Elmassoudi, H., Brivio, S., ... & Müller, B. (2022). A novel, essential trans-splicing protein connects the nematode SL1 snRNP to the CBC-ARS2 complex. Nucleic Acids Research, 50(13), 7591-7607. https://doi.org/10.1093/nar/gkac534
Gumerov, V. M., Ulrich, L. E., & Zhulin, I. B. (2024). MiST 4.0: a new release of the microbial signal transduction database, now with a metagenomic component. Nucleic Acids Research, 52(D1), D647-D653. https://doi.org/10.1093/nar/gkad847
Hosseini, A. N., & Van der Spoel, D. (2023). Simulations of Amyloid-Forming Peptides in the Crystal State. The Protein Journal, 42(3), 192-204. https://doi.org/10.1007/s10930-023-10119-3
Jaidhan, B. J., Rao, P. S., & Apparao, A. (2014). Energy minimization and conformation analysis of molecules using steepest descent method. Int. J. Comput. Sci. Inf. Technol, 5(3), 3525-3528.
Jędrzejowska, M. (2020). Advances in newborn screening and presymptomatic diagnosis of spinal muscular atrophy. Degenerative Neurological and Neuromuscular Disease, 39-47.
Kavas, M., Mostafa, K., Seçgin, Z., Yerlikaya, B. A., Yıldırım, K., & Gökdemir, G. (2023). Genome-wide analysis of duf221 domain-containing gene family in common bean and identification of its role on abiotic and phytohormone stress response. Genetic Resources and Crop Evolution, 70(1), 169-188. https://doi.org/10.1007/s10722-022-01421-7
Khan, A., Adil, S., Qudsia, H. A., Waheed, Y., Alshabrmi, F. M., & Wei, D. Q. (2023). Structure-based design of promising natural products to inhibit thymidylate kinase from Monkeypox virus and validation using free energy calculations. Computers in Biology and Medicine, 158, 106797. https://doi.org/10.1016/j.compbiomed.2023.106797
Lefebvre, S., Bürglen, L., Reboullet, S., Clermont, O., Burlet, P., Viollet, L., ... & Melki, J. (1995). Identification and characterization of a spinal muscular atrophy-determining gene. Cell, 80(1), 155-165.
Li, W. (2017). How do SMA-linked mutations of SMN1 lead to structural/functional deficiency of the SMA protein?. PLoS One, 12(6), e0178519. https://doi.org/10.1371/journal.pone.0178519
Lu, G., Ou, K., Zhang, Y., Zhang, H., Feng, S., Yang, Z., ... & Chen, Z. (2023). Structural analysis, multi-conformation virtual screening and molecular simulation to identify potential inhibitors targeting pS273R proteases of African swine fever virus. Molecules, 28(2), 570. https://doi.org/10.3390/molecules28020570
Lussi, Y. C., Magrane, M., Martin, M. J., Orchard, S., & UniProt Consortium. (2023). Searching and navigating UniProt databases. Current Protocols, 3(3), e700.https://doi.org/10.1002/cpz1.700
Macnee, M., Pérez-Palma, E., López-Rivera, J. A., Ivaniuk, A., May, P., Møller, R. S., & Lal, D. (2023). Data-driven historical characterization of epilepsy-associated genes. European Journal of Paediatric Neurology, 42, 82-87. https://doi.org/10.1016/j.ejpn.2022.12.005
Mendell, J., Wigderson, M., Alecu, I., Yang, L., Mehl, L., & Connolly, A. (2023). P223 Long-term follow-up of onasemnogene abeparvovec gene therapy in patients with spinal muscular atrophy (SMA) type 1. Neuromuscular Disorders, 33, S91. https://doi.org/10.1016/j.nmd.2023.07.105
Nicolau, S., Waldrop, M. A., Connolly, A. M., & Mendell, J. R. (2021, April). Spinal muscular atrophy. In Seminars in pediatric neurology (Vol. 37, p. 100878). WB Saunders. https://doi.org/10.1016/j.spen.2021.100878
Nilay, M., Moirangthem, A., Saxena, D., Mandal, K., & Phadke, S. R. (2021). Carrier frequency of SMN1‐related spinal muscular atrophy in north Indian population: The need for population based screening program. American Journal of Medical Genetics Part A, 185(1), 274-277. https://doi.org/10.1002/ajmg.a.61918
Nishio, H., Niba, E. T. E., Saito, T., Okamoto, K., Takeshima, Y., & Awano, H. (2023). Spinal muscular atrophy: the past, present, and future of diagnosis and treatment. International Journal of Molecular Sciences, 24(15), 11939. https://doi.org/10.3390/ijms241511939
Oskoui, M., Day, J. W., Deconinck, N., Mazzone, E. S., Nascimento, A., Saito, K., ... & SUNFISH Working Group. (2023). Two-year efficacy and safety of risdiplam in patients with type 2 or non-ambulant type 3 spinal muscular atrophy (SMA). Journal of Neurology, 270(5), 2531-2546. https://doi.org/10.1007/s00415-023-11658-6
Pahlavan, Y., Yeganeh, O., Asghariazar, V., & Karami, C. (2024). Multi-epitope vaccine against SARS-CoV-2 targeting the spike RBD: an immunoinformatics approach. Future Science OA, 10(1), FSO939. https://doi.org/10.2144/fsoa-2023-0081
Praveena, R., Balasankar, A., Aruchamy, K., Oh, T., Polisetti, V., Ramasundaram, S., & Anbazhakan, K. (2022). Structural Activity and HAD Inhibition Efficiency of Pelargonidin and Its Glucoside—A Theoretical Approach. Molecules, 27(22), 8016. https://doi.org/10.3390/molecules27228016
Ramos, D. M., d’Ydewalle, C., Gabbeta, V., Dakka, A., Klein, S. K., Norris, D. A., ... & Sumner, C. J. (2019). Age-dependent SMN expression in disease-relevant tissue and implications for SMA treatment. The Journal of clinical investigation, 129(11), 4817-4831. 10.1172/JCI124120
Ratni, H., Ebeling, M., Baird, J., Bendels, S., Bylund, J., Chen, K. S., ... & Mueller, L. (2018). Discovery of risdiplam, a selective survival of motor neuron-2 (SMN2) gene splicing modifier for the treatment of spinal muscular atrophy (SMA). https://doi.org/10.1021/acs.jmedchem.8b00741
Romero-Rivera, A., Garcia-Borras, M., & Osuna, S. (2017). Role of conformational dynamics in the evolution of retro-aldolase activity. ACS catalysis, 7(12), 8524-8532. https://doi.org/10.1021/acscatal.7b02954
Savad, S., Ashrafi, M. R., Samadaian, N., Heidari, M., Modarressi, M. H., Zamani, G., ... & Ghafouri-Fard, S. (2023). A comprehensive overview of SMN and NAIP copy numbers in Iranian SMA patients. Scientific Reports, 13(1), 3202. https://doi.org/10.1038/s41598-023-30449-7
Sawal, H. A., Nighat, S., Safdar, T., & Anees, L. (2023). Comparative in silico analysis and functional characterization of TANK-binding kinase 1–binding protein 1. Bioinformatics and Biology Insights, 17, 11779322231164828. https://doi.org/10.1177/1177932223116482
Sharmin, N., Yee, K. K., Dhaliwal, J. K., & Chow, A. K. (2023). Thinking outside the box: Using homology models and interactive PowerPoints for active learning. Journal of Dental Education, 88(Suppl 3), 1902. 10.1002/jdd.13421
Spoel, D. V. D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: fast, flexible, and free. J Comput Chem, 26(16), 1701-1718. https://doi.org/10.1002/jcc.20291
Subbiah, T., Maheswaran, G., & Raja, V. K. (2023). In Silico Protein Analysis of Phoenix dactylifera (Date Palm) by a Bioinformatics Approach. ACS Agricultural Science & Technology, 3(6), 528-534.
Younger, D. S., & Mendell, J. R. (2023). Childhood spinal muscular atrophy. Handbook of clinical neurology, 196, 43-58. https://doi.org/10.1016/B978-0-323-98817-9.00030-2
Zeindl, R., Unterhauser, J., Röck, M., Eidelpes, R., Führer, S., & Tollinger, M. (2023). Structural characterization of food allergens by nuclear magnetic resonance spectroscopy. In Food Allergens: Methods and Protocols (pp. 159-173). New York, NY: Springer US. https://doi.org/10.1007/978-1-0716-3453-0_10
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.