Poly-Herbal Neuroprotection: Pharmacological mitigation of Ischemic Damage and BBB disruption in a rat model of tMCAO

Authors

  • Sonu Dewaji Gathe
  • Rupesh Soni

Keywords:

Cerebral Ischemia, Bbb, Neurology, Inflammation, Infraction

Abstract

Background

Cerebral ischemia due transient middle cerebral artery occlusion (tMCAO) induced substantial neuronal injury, compromises the integrity of the Blood –Brain Barrier (BBB), and result in marked neurological impairments. The present study evaluates the neuroprotective potential of a poly-herbal mixture in mitigating ischemic brain injury and promoting functional recovery.

Methods

A well-established tMCAO model was employed in rats to induce focal cerebral ischemia. Experimental groups included healthy controls, untreated tMCAO animals, and tMCAO animals treated with the poly-herbal mixture. Infarct volume was quantified, BBB integrity assessed via Evans blue dye extravasation, and neurological function evaluated through multiple behavioural parameters including grid hold test, limb symmetry, forepaw outstretching, body proprioception, and vibrissae touch response.

Results

The tMCAO group exhibited a significant increase in infarct volume (27.79 ± 3.37%)  associated to healthy controls (0.00 ± 0.00%, p < 0.001). Treatment with the poly-herbal mixture significantly reduced infarct volume (6.15 ± 3.70%, p < 0.01), with no statistically significant difference from healthy controls. BBB disruption in the tMCAO group was confirmed by elevated Evans blue dye concentration (7.93 ± 0.67), while treated animals showed significantly reduced levels (3.55 ± 0.37, p < 0.0001), indicating partial restoration of BBB integrity.

Neurological scores significantly improved with treatment across all behavioural parameters. Grid hold test scores increased from 0.61 ± 0.25 (tMCAO) to 2.11 ± 0.17 (treated group). Improvements were similarly observed in limb symmetry (2.17 ± 0.18), forepaw outstretching (2.33 ± 0.44), body proprioception (2.39 ± 0.23), and response to vibrissae touch (2.66 ± 0.23), all with p < 0.0001.

Conclusion

The poly-herbal mixture demonstrated robust neuroprotective effects in the tMCAO model by significantly reducing infarct volume, partially restoring BBB integrity, and improving motor and sensory functions. These findings support the therapeutic potential of poly-herbal strategies for ischemic stroke and warrant further investigation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Balkaya, M., Krö Ber, J. M., Rex, A., & Endres, M. (2013). Assessing post-stroke behavior in mouse models of focal ischemia. Journal of Cerebral Blood Flow & Metabolism, 33, 330–338. https://doi.org/10.1038/jcbfm.2012.185

Bederson, J. B., Pitts, L. H., Germano, S. M., Nishimura, M. C., Davis, R. L., & Bartkowski, H. M. (1986). Evaluation of 2, 3, 5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke, 17(6), 1304–1308. https://doi.org/10.1161/01.STR.17.6.1304

Biller, J., Love, B. B., Marsh, E. E., Jones, M. P., Knepper, L. E., Jiang, D., Adams, H. P., & Gordon, D. L. (1990). Spontaneous improvement after acute ischemic stroke: A pilot study. Stroke, 21(7), 1008–1012. https://doi.org/10.1161/01.STR.21.7.1008,

Braeuninger, S., & Kleinschnitz, C. (2009). Rodent models of focal cerebral ischemia: procedural pitfalls and translational problems. Experimental & Translational Stroke Medicine, 1(1), 8. https://doi.org/10.1186/2040-7378-1-8

Carmichael, S. T. (2005). Rodent models of focal stroke: Size, mechanism, and purpose. NeuroRx, 2(3), 396–409. https://doi.org/10.1602/NEURORX.2.3.396/METRICS

Chu, X., Qi, C., Zou, L., & Fu, X. (2008). Intraluminal suture occlusion and ligation of the distal branch of internal carotid artery: An improved rat model of focal cerebral ischemia-reperfusion. Journal of Neuroscience Methods, 168(1), 1–7. https://doi.org/10.1016/j.jneumeth.2007.08.030

Durukan, A., & Tatlisumak, T. (2007). Acute ischemic stroke: Overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacology Biochemistry and Behavior, 87(1), 179–197. https://doi.org/10.1016/J.PBB.2007.04.015

Emberson, J., Lees, K. R., Lyden, P., Blackwell, L., Albers, G., Bluhmki, E., Brott, T., Cohen, G., Davis, S., Donnan, G., Grotta, J., Howard, G., Kaste, M., Koga, M., Von Kummer, R., Lansberg, M., Lindley, R. I., Murray, G., Olivot, J. M., … Hacke, W. (2014). Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet (London, England), 384(9958), 1929. https://doi.org/10.1016/S0140-6736(14)60584-5

Fan, F., & Lei, M. (n.d.). Mechanisms Underlying Curcumin-Induced Neuroprotection in Cerebral Ischemia. https://doi.org/10.3389/fphar.2022.893118

Feigin, V. L., Abate, M. D., Abate, Y. H., Abd ElHafeez, S., Abd-Allah, F., Abdelalim, A., Abdelkader, A., Abdelmasseh, M., Abd-Elsalam, S., Abdi, P., Abdollahi, A., Abdoun, M., Abd-Rabu, R., Abdulah, D. M., Abdullahi, A., Abebe, M., Abeldaño Zuñiga, R. A., Abhilash, E. S., Abiodun, O. O., … Murray, C. J. L. (2024). Global, regional, and national burden of stroke and its risk factors, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. The Lancet Neurology, 23(10), 973–1003. https://doi.org/10.1016/S1474-4422(24)00369-7

Garcia, J. H., Wagner, S., Liu, K. F., & Hu, X. J. (1995a). Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats: Statistical validation. Stroke, 26(4), 627–635. https://doi.org/10.1161/01.STR.26.4.627/ASSET/D6F51A65-684F-4409-A4B6-F5F58099E815/ASSETS/GRAPHIC/HS0451886005.GIF

Garcia, J. H., Wagner, S., Liu, K. F., & Hu, X. J. (1995b). Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats: Statistical validation. Stroke, 26(4), 627–635. https://doi.org/10.1161/01.str.26.4.627

Harukuni, I., clinics, A. B.-N., & 2006, undefined. (n.d.). Mechanisms of brain injury after global cerebral ischemia. Neurologic.Theclinics.Com. https://doi.org/10.1016/j.ncl.2005.10.004

Iadecola, C., & Anrather, J. (2011). The immunology of stroke: from mechanisms to translation. Nature Medicine, 17(7), 796–808. https://doi.org/10.1038/NM.2399

Kozler, P., & Pokorný, J. (2003). Altered Blood-Brain Barrier Permeability and Its Effect on the Distribution of Evans Blue and Sodium Fluorescein in the Rat Brain Applied by Intracarotid Injection. Physiol. Res, 52, 607–614. http://www.biomed.cas.cz/physiolres

Lin, T. N., He, Y. Y., Wu, G., Khan, M., & Hsu, C. Y. (1993). Effect of brain edema on infarct volume in a focal cerebral ischemia model in rats. Stroke, 24(1), 117–121. https://doi.org/10.1161/01.STR.24.1.117,

Lo, E. H., Dalkara, T., & Moskowitz, M. A. (2003). Mechanisms, challenges and opportunities in stroke. Nature Reviews. Neuroscience, 4(5), 399–414. https://doi.org/10.1038/NRN1106

Maheshwari, A., Badgujar, L., … B. P.-E. journal of, & 2011, undefined. (n.d.). Protective effect of Etoricoxib against middle cerebral artery occlusion induced transient focal cerebral ischemia in rats. ElsevierA Maheshwari, L Badgujar, B Phukan, SL Bodhankar, P ThakurdesaiEuropean Journal of Pharmacology, 2011•Elsevier. Retrieved April 25, 2025, from https://www.sciencedirect.com/science/article/pii/S001429991100598X

Manaenko, A., Chen, H., Kammer, J., Zhang, J. H., & Tang, J. (2011). Comparison Evans Blue injection routes: Intravenous versus intraperitoneal, for measurement of blood-brain barrier in a mice hemorrhage model. Journal of Neuroscience Methods, 195(2), 206–210. https://doi.org/10.1016/j.jneumeth.2010.12.013

Michalicova, A., Galba, J., Novak, M., & Kovac, A. (2017). Determination of Evans blue as a blood–brain barrier integrity tracer in plasma and brain tissue by UHPLC/UV method. Journal of Liquid Chromatography & Related Technologies, 40(9), 442–448. https://doi.org/10.1080/10826076.2017.1320289

Minnerup, J., Sutherland, B. A., Buchan, A. M., & Kleinschnitz, C. (2012). Neuroprotection for Stroke: Current Status and Future Perspectives. Int. J. Mol. Sci, 13, 11753–11772. https://doi.org/10.3390/ijms130911753

O’Neill, M. J., & Clemens, J. A. (2001). Rodent models of focal cerebral ischemia. Current Protocols in Neuroscience, Chapter 9(1). https://doi.org/10.1002/0471142301.NS0906S12

Persson, L., Hårdemark, H. G., Bolander, H. G., Hillered, L., & Olsson, Y. (1989). Neurologic and neuropathologic outcome after middle cerebral artery occlusion in rats. Stroke, 20(5), 641–645. https://doi.org/10.1161/01.STR.20.5.641,

Powers, W. J., Rabinstein, A. A., Ackerson, T., Adeoye, O. M., Bambakidis, N. C., Becker, K., Biller, J., Brown, M., Demaerschalk, B. M., Hoh, B., Jauch, E. C., Kidwell, C. S., Leslie-Mazwi, T. M., Ovbiagele, B., Scott, P. A., Sheth, K. N., Southerland, A. M., Summers, D. V., & Tirschwell, D. L. (2018). 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke, 49(3), e46–e110. https://doi.org/10.1161/STR.0000000000000158/SUPPL_FILE/DATA_SUPPLEMENT_2.PDF

Schäbitz, W. R., Schwab, S., Spranger, M., & Hacke, W. (1997). Intraventricular brain-derived neurotrophic factor reduces infarct size after focal cerebral ischemia in rats. Journal of Cerebral Blood Flow and Metabolism, 17(5), 500–506. https://doi.org/10.1097/00004647-199705000-00003,

Sookplung, P., Suchartwatnachai, P., & Akavipat, P. (2023). The dosage of thiopental as pharmacological cerebral protection during non-shunt carotid endarterectomy: A retrospective study [version 3; peer review: 2 approved]. https://doi.org/10.12688/f1000research.131838.1

Subedi, L., & Gaire, B. P. (2021). Neuroprotective Effects of Curcumin in Cerebral Ischemia: Cellular and Molecular Mechanisms. ACS Chemical Neuroscience, 12(14), 2562–2572. https://doi.org/10.1021/ACSCHEMNEURO.1C00153/SUPPL_FILE/CN1C00153_SI_001.PDF

Sujata Wankhede, N. K. S. P. V. H. A. M. S. D. G. P. S. U. A. T. K. R. (2025). Evaluating Withaferin A: Neuropsychopharmacological Impact through Pentobarbitone-Induced Sleep, Forced Swim Test, and Spontaneous Locomotor Activity Modulation in Mice. Cuestiones de Fisioterapia, 54(3), 1800–1890. https://doi.org/10.48047/GG1YNB35

Swanson, R. A., Morton, M. T., Tsao-Wu, G., Savalos, R. A., Davidson, C., & Sharp, F. R. (1990). A semiautomated method for measuring brain infarct volume. Journal of Cerebral Blood Flow and Metabolism, 10(2), 290–293. https://doi.org/10.1038/JCBFM.1990.47,

Traystman, R. J. (2003a). Animal models of focal and global cerebral ischemia. ILAR Journal, 44(2), 85–95. https://doi.org/10.1093/ILAR.44.2.85/2/ILAR-44-2-85FIG2.GIF

Traystman, R. J. (2003b). Animal models of focal and global cerebral ischemia. ILAR Journal, 44(2), 85–95. https://doi.org/10.1093/ILAR.44.2.85,

Traystman, R. J. (2003c). Animal models of focal and global cerebral ischemia. ILAR Journal, 44(2), 85–95. https://doi.org/10.1093/ILAR.44.2.85

Veizovic, T., Beech, J. S., Stroemer, R. P., Watson, W. P., & Hodges, H. (2001). Resolution of stroke deficits following contralateral grafts of conditionally immortal neuroepithelial stem cells. Stroke, 32(4), 1012–1019. https://doi.org/10.1161/01.STR.32.4.1012,

Yang, R., Yang, B., Liu, W., Tan, C., Chen, H., & Wang, X. (2023). Emerging role of non-coding RNAs in neuroinflammation mediated by microglia and astrocytes. Journal of Neuroinflammation 2023 20:1, 20(1), 1–20. https://doi.org/10.1186/S12974-023-02856-0

Downloads

Published

2025-05-10

How to Cite

1.
Dewaji Gathe S, Soni R. Poly-Herbal Neuroprotection: Pharmacological mitigation of Ischemic Damage and BBB disruption in a rat model of tMCAO. J Neonatal Surg [Internet]. 2025May10 [cited 2025Oct.30];14(18S):1033-4. Available from: https://mail.jneonatalsurg.com/index.php/jns/article/view/5507

Most read articles by the same author(s)