Meta Analysis on Nanoparticles: Structure, Properties, Prepration, Enviornmental Significance and Application
Keywords:
Application of nanoparticles, nanoparticles, properties of nanoparticles, preparation of nanoparticles structure of nanoparticles, use and misuse of nanoparticlesAbstract
Nanoparticles have thousands of uses thanks to research activities over the last 20 years. Products with different features. They show different properties depending on their size. These properties make them reliable for many domestic and industrial based tasks, including chemical, pharma and biopharmaceutical applications , electrical researches and environmental based applications. Different types of heavy metal np such as lead, mercury, and tin have been found to be flexible usability and stable, do not degrade easily, and can cause many toxicities
Downloads
References
Ibrahim K, Khalid S, Idrees K; Nanoparticles: properties, application, and toxicities: Arabian journal of chemistry, 2019,Vol 12, Issues 7, , Pp. 908-931.
Biswas P, Wc. C. Y: Nanoparticles and the environmental journal of the air & waste management association, 55(6), 708-746.
Christian P, Kammer Von de. F, Baalousha M, Hofmann T: Nanoparticles: structure, properties, preparation and behavior in environmental media, 2008 (17), 326-343.
Rodolfo R, Tavakoli S, Reddy V, William D S, Jan C M: Exploring the impact of morphology on the properties of biodegradeable nanoparticles and their diffusion in complex biological medium, 2021, 22, 126-133.
Rajput N, Methods of preparation of Nanoparticles-A Review; International journal of advances in engineering and technology, Jan 2015.
Mrinmoy D, Partha S, Ghosh, Vincent M R: Application of nanoparticles in biology, Advanced material, 2008, Vol 20, Issue 22, Pp. 4225-4241.
Baalousha M, Lead J. R, Characterization of natural aquatic colloids (5 nm) by flow-field flow fractionation and atomic force microscopy. Environ Sci Techno, (2007), 41:Pp. 1111–1117.
Baalousha M, Manciulea A, Cumberland S, Kendall K, Lead JR. Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter. Environ Toxicol Chem. 2008;27(9):1875-1882
Ballesteros E, Gallego M, Valcárcel M. Analytical potential of fullerene as adsorbent for organic and organometallic compounds from aqueous solutions. J Chromatogr A. 2000;869(1-2):101-110.
Biswas P, Wu CY. Nanoparticles and the environment. J Air Waste Manag Assoc. 2005;55(6):708-746.
Buffle J The key role of environmental colloids/nanoparticles for the sustainablility of life. Environ Chem 3,(2006):155–15
Jarvis P, Jefferson B, Gregory J, Parsons SA. A review of floc strength and breakage. Water Res. 2005;39(14):3121-3137.
Johnson CP, Li X, Logan BE, Settling velocities of fractal aggregates. Environ Sci Technol 1996, 30:1911–1918
Kreyling WG, Semmler-Behnke M, Moller W, Health implications of nanoparticles. J Nanoparticle Res 2006, 8:543–562
Kukovitsky EF, L’vov SG, Sainov NA VLS-growth of carbon nanotubes from the vapour. Chem Phys Lett, 2000, 317:65–70
Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL (2006) A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol ,2006,36:189–217
Lead JR, Hamilton-Taylor J, Davison W, Harper M, Trace metal sorption by natural particles and coarse colloids. Geochim Cosmochim Acta (1999) ,63:1661–1670
Lead JR, Muirhead D, Gibson CT, Characterisation of freshwater natural aquatic colloids by atomic force microscopy (AFM). Environ Sci Technol (2005) ,39:6930–6936
Lead JR, Wilkinson KJ, Aquatic colloids and nanoparticles: current knowledge and future trends. Environ Chem (2006), 3:159–171
Li XY, Logan BE (2001) Permeability of fractal aggregates. Water Res (2001), 35:3373–3380
Li YH, Wang S, Wei J, Zhang X, Xu C, Luan Z, Wu D, Wei B, Lead adsorption on carbon nanotubes. Chem Phys Lett 357,(2002), 263–266
National Nanotechnology Initiative. Available at http://www.nano.gov/ html/facts/EHS.htm (accessed 2004).
Roco, M.C. Broader Societal Issues of Nanotechnology; J. Nanopart. Res. 2003, 5, 181-189.
Choi, M.; Biswas, P.; Fissan, H.; Pui, D. Y. H. Special Issue on Nanoparticles: Technology and Sustainable Development; J. Nanopart. Res. 2003.
Masciangioli, T.; Zhang, W. X. Environmental Technologies at the Nanoscale; Environ. Sci. Technol. 2003, 37, 102a-108a.
Colvin, V. Point of Impact: Where Technology Collides With Society, Business, and Personal Lives; Technol. Rev. 2003, 106, 71-73.
Crichton, M. Prey; New York, NY: Harper Collins, 2002
ETC Group. Available at http://www.etcgroup.org/documents/TheBig Down.pdf (accessed 2003).
Chang, M.C.O., Chow, J.C.; Watson, J.G.; Hopke, P.K.; Yi, S.M.; England, G.C. Measurement of Ultrafine Particle Size Distributions From Coal-, Oil-, and Gas-Fired Stationary Combustion Sources; J. Air & Waste Manage. Assoc. 2004, 54, 1494-1505.
Kittelson, D.B. Engines and Nanoparticles: A Review; J. Aero. Sci. 1998, 29, 575-588.
Vincent, J.H.; Clement, C.F. Ultrafine Particles in Workplace Atmospheres; Philos. Trans. Royal Soc. Lond. Series a-Math. Phys. Eng. Sci. 2000, 358, 2673-2682.
Hogan, C.J.; Lee, M.H.; Biswas, P. Capture of Viral Particles in Soft X-Ray-Enhanced Corona Systems: Charge Distribution and Transport Characteristics; Aero. Sci. Technol. 2004, 38, 475-486.
McMurry, P.H.; Woo, K.S.; Weber, R.; Chen, D.R.; Pui, D.Y.H. Size Distributions of 3–10 nm Atmospheric Particles: Implications for Nucleation Mechanisms; Philos. Trans. Royal Soc. Lond. Series a-Math. Phys. Eng. Sci. 2000, 358, 2625-2642.
Donaldson, K.; Li, X.Y.; MacNee, W. Ultrafine (Nanometre) Particle Mediated Lung Injury; J. Aero. Sci. 1998, 29, 553-560.
Biswas, P.; Wu, C.Y. Control of Toxic Metal Emission From Combustors Using Sorbents: A Review; J. Air & Waste Manage. Assoc. 1998, 48, 113-127.
Lloyd, S.M.; Lave, L.B.; Matthews, H.S. Life Cycle Benefits of Using Nanotechnology to Stabilize Platinum-Group Metal Particles in Automotive Catalysts; Environ. Sci. Technol. 2005, 39, 1384-1392.
Zhang, W.; Wang, C. Nanoscale Metal Particles for Dechlorination of PCE and PCBs; Environ. Sci. Technol. 1997, 31, 2154-2156
Zhang, W.X. Nanoscale Iron Particles for Environmental Remediation: an Overview; J. Nanopart. Res. 2003, 5, 323-332.
Onyango, M.S.; Kojima, Y.; Matsuda, H.; Ochieng, A. Adsorption Kinetics of Arsenic Removal From Groundwater by Iron-Modified Zeolite; J. Chem. Eng. Japan 2003, 36, 1516-1522.
Peng, X.J.; Luan, Z.K.; Ding, J.; Di, Z.H.; Li, Y.H.; Tian, B.H. Ceria Nanoparticles Supported on Carbon Nanotubes for the Removal of Arsenate From Water; Mater. Lett. 2005, 59, 399-403.
Keoliean, G.A.; Menery, D. Sustainble Development by Design— Review of Life-Cycle Design and Related Approaches; J. Air & Waste Manage. Assoc. 1994, 44, 645-668
Banfield, J.F.; Zhang, H.Z. Nanoparticles and the Environment; Rev. Miner. Geochem. 2001, 44, 1-58.
Luther, W. Industrial Application of Nanomaterials—Chances and Risks; Future Technologies. Division of VDI Technologiezentrum GmbH: Dusseldorf, Germany, 2004.
Friedlander, S. K.; Pui, D. Y. H. Emerging Issues in Nanoparticle Aerosol Science and Technology; NSF Workshop Report; UCLA: Los Angeles, CA, 2003
Kulmala, M. How Particles Nucleate and Grow; Science 2003, 302, 1000-1001.
Kulmala, M.; Vehkamaki, H.; Petajda, T.; Dal Maso, M.; Lauri, A.; Kerminen, V.M.; Birmili, W.; McMurry, P.H. Formation and Growth Rates of Ultrafine Atmospheric Particles: A Review of Observations; J. Aero. Sci. 2004, 35, 143-176.
Hildemann, L.M.; Markowski, G.R.; Jones, M.C.; Cass, G.R. Submicrometer Aerosol Mass Distributions of Emissions From Boilers, Fireplaces, Automobiles, Diesel Trucks, and Meat-Cooking Operations; Aerosol. Sci. Technol. 1991, 14, 138-152.
Maguhn, J.; Karg, E.; Kettrup, A.; Zimmermann, R. On-Line Analysis of the Size Distribution of Fine and Ultrafine Aerosol Particles in Flue and Stack gas of a Municipal Waste Incineration Plant: Effects of Dynamic Process Control Measures and Emission Reduction Devices; Environ. Sci. Technol. 2003, 37, 4761-4770.
Liu, Y.; Daum, P.H. The Effect of Refractive Index on Size Distributions and Light Scattering Coefficients Derived From Optical Particl ECounters; J. Aerosol. Sci. 2000, 31, 945-957.
Zhuang, Y.; Biswas, P. Submicrometer Particle Formation and Control in a Bench-Scale Pulverized Coal Combustor; Energy Fuels 2001, 15, 510-516.
Ebelt, S.; Brauer, M.; Cyrys, J.; Tuch, T.; Kreyling, W.G.; Wichmann, H.E.; Heinrich, J. Air Quality in Postunification Erfurt, East Germany: Associating Changes in Pollutant Concentrations With Changes in Emissions; Environ. Health. Perspect. 2001, 109, 325-333.
Lipsky, E.; Stanier, C.O.; Pandis, S.N.; Robinson, A.L. Effects of Sampling Conditions on the Size Distribution of Fine Particulate Matter Emitted From a Pilot-Scale Pulverized-Coal Combustor; Energy Fuels 2002, 16, 302-310.
Zhang, K.M.; Wexler, A.S. Evolution of Particle Number Distribution Near Roadways - Part i: Analysis of Aerosol Dynamics and its Implications for Engine Emission Measurement; Atmos. Environ. 2004, 38, 6643-6653.
Biswas, P. Measurement of High Concentration and High Temperature Aerosols. In Aerosol Measurement: Principles, Techniques, and Applications. Baron, P. A., Willeke, K., Eds., New York, NY: A John Wiley & Sons, Inc.,: 2001.
Tolocka, M.P.; Lake, D.A.; Johnston, M.V.; Wexler, A.S. Number Concentrations of Fine and Ultrafine Particles Containing Metals; Atmos. Environ. 2004, 38, 3263-3273.
Watson, J.G.; Zhu, T.; Chow, J.C.; Engelbrecht, J.; Fujita, E.M.; Wilson, W.E. Receptor Modeling Application Framework for Particle Source Apportionment; Chemosphere 2002, 49, 1093-1136.
Chow, J.C.; Watson, J.G.; Kuhns, H.; Etyemezian, V.; Lowenthal, D.H.; Crow, D.; Kohl, S.D.; Engelbrecht, J.P.; Green, M.C. Source Profiles for Industrial, Mobile, and Area Sources in the Big Bend Regional Aerosol Visibility and Observational Study; Chemosphere 2004, 54, 185-208.
Utsunomiya, S.; Jensen, K.A.; Keeler, G.J.; Ewing, R.C. Direct Identification of Trace Metals in Fine and Ultrafine Particles in the Detroit Urban Atmosphere; Environ. Sci. Technol. 2004, 38, 2289-2297.
Anderson, P.J.; Wilson, J.D.; Hiller, F.C. Particle Size Distribution of Mainstream Tobacco and Marijuana Smoke; Am. Rev. Respir. Dis. 1989, 340, 202-205.
Li, C. S.; Jeng, F. T.; Lin, W. H. Field Characterization of Submicron Aerosols from Indoor Combustion Sources. J. Aerosol. Sci. 1992, 23(Suppl. 1), S547–S550.
Wallace, L.A.; Emmerich, S.J.; Howard-Reed, C. Source Strengths of Ultrafine and Fine Particles Due to Cooking With a Gas Stove; Environ. Sci. Technol. 2004, 38, 2304-2311.
Wallace, L. Real-Time Montoring of Particles, PAH, and CO in an Occupied Townhouse; Appl. Occup. Environ. Hyg. 2000, 15, 39-47.
Dennekamp, M.; Howarth, S.; Dick, C.A.J., Cherrie, J.W.; Donaldson, K.; Seaton, A. Ultrafine Particles and Nitrogen Oxides Generated by Gas and Electric Cooking; Occup. Environ. Med. 2001, 58, 511-516.
Venkataraman, C.; Habib, G.; Eiguren-Fernandez, A.; Miguel, A.H.; Friedlander, S.K. Residential Biofuels in South Asia: Carbonaceous Aerosol Emissions and Climate Impacts; Science 2005, 307, 1454- 1456
Tobias, H.J.; Beving, D.E.; Ziemann, P.J.; Sakurai, H.; Zuk, M.; McMurry, P.H.; Zarling, D.; Waytulonis, R.; Kittelson, D.B. Chemical Analysis of Diesel Engine Nanoparticles Using a Nano-DMA/Thermal Desorption Particle Beam Mass Spectrometer; Environ. Sci. Technol. 2001, 35, 2233-2243.
Sakurai, H.; Tobias, H.J.; Park, K.; Zarling, D.; Docherty, S.; Kittelson, D.B.; McMurry, P.H.; Ziemann, P.J. On-Line Measurements of Diesel Nanoparticle Composition and Volatility; Atmos. Environ. 2003, 37, 1199-1210.
Burtscher, H.; Kunzel, S.; Huglin, C. Characterization of Particles in Combustion Engine Exhaust; J. Aero. Sci. 1998, 29, 389-396.
McDonald, R.; Hu, S.H.; Martuzevicius, D.; Grinshpun, S.A. LeMasters, G.; Biswas, P; Intensive Short Term Measurements of the Ambient Aerosol in the Greater Cincinnati Airshed. Aero. Sci. Technol. 2004, 38, 70-79.
Rickeard, D.J.; Bateman, J.R.; Kwon, Y.K.; McAughey, J.J.; Dickens, C.J. Exhaust Particulate Size Distribution: Vehicle and Fuel Influences in Light Duty Vehicles; Society of Automotive Engineers: Warrendale, PA, 1996.
Shi, J.P.; Evans, D.E.; Khan, A.A.; Harrison, R.M. Sources and Concentration of Nanoparticles ( 10 nm Diameter) in the Urban Atmosphere; Atmos. Environ. 2001, 35, 1193-1202.
Harris, S.J.; Maricq, M.M. Signature Size Distributions for Diesel and Gasoline Engine Exhaust Particulate Matter; J. Aerosol. Sci. 2001, 32, 749-764.
Ristovski, Z.D.; Morawska, L.; Bofinger, N.D.; Hitchins, J. Submicrometer and Supermicrometer Particulate Emission From Spark Ignition Vehicles; Environ. Sci. Technol. 1998, 32, 3845-3852.
Faiz, A.; Weaver, C.S.; Walsh, M.P. Air Pollution from Motor Vehicles: Standards and Technologies for Controlling Emissions; The World Bank: Washington, DC, 1996.
Wehner, B.; Birmili, W.; Gnauk, T.; Wiedensohler, A. Particle Number Size Distributions in a Street Canyon and Their Transformation Into the Urban-air Background: Measurements and a Simple Model Study; Atmos. Environ. 2002, 36, 2215-2223.
Zhu, Y.F.; Hinds, W.C.; Kim, S.; Sioutas, C. Concentration and Size Distribution of Ultrafine Particles Near a Major Highway; J. Air & Waste Manage. Assoc. 2002, 52, 1032-1042.
Kim, S.; Shen, S.; Sioutas, C.; Zhu, Y.F.; Hinds, W.C. Size Distribution and Diurnal and Seasonal Trends of Ultrafine Particles in Source and Receptor Sites of the los Angeles Basin; J. Air & Waste Manage. Assoc. 2002, 52, 297-307.
Ruhle, T.; Schneider, H.; Find, J.; Herein, D.; Pfander, N.; Wild, U.; Schlogl, R.; Nachtigall, D.; Artelt, S.; Heinrich, U. Preparation and Characterisation of pt/Al2O3 Aerosol Precursors as Model pt-Emissions From Catalytic Converters; Appl. Catal. B-Environ. 1997, 14, 69-84.
Artelt, S.; Kock, H.; Konig, H.P.; Levsen, K.; Rosner, G. Engine Dynamometer Experiments: Platinum Emissions From Differently Aged Three-way Catalytic Converters; Atmos. Environ. 1999, 33, 3359- 3567.
Vijay, R.; Hendershot, R.J.; Rivera-Jimenez, S.M.; Rogers, W.B.; Feist, B.J.; Snively, C.M.; Lauterbach, J. Noble Metal Free nox Storage Catalysts Using Cobalt Discovered via High-Throughput Experimentation; Catal. Comm. 2005, 6, 167-171.
Mathis, U.; Ristimaki, J.; Mohr, M.; Keskinen, J.; Ntziachristos, L.; Samaras, Z.; Mikkanen, P. Sampling Conditions for the Measurement of Nucleation Mode Particles in the Exhaust of a Diesel Vehicle; Aerosol. Sci. Technol. 2004, 38, 1149-1160.
Franck, U.; Herbarth, O.; Wehner, B.; Wiedensohler, A.; Manjarrez, M. How Do the Indoor Size Distributions of Airborne Submicron and Ultrafine Particles in the Absence of Significant Indoor Sources Depend on Outdoor Distributions?; Indoor Air 2003, 13, 174-181.
Aiken, J. On the Formation of Small Clear Spaces in Dusty Air Trans. Roy. Soc. Edinburgh 1884, 30, 337–368.
Seinfeld, J.A.; Pandis, S.N. Atmospheric Chemistry and Physics; John Wiley & Sons: New York, 1998.
Saros, M.T.; Weber, R.J.; Marti, J.J.; McMurry, P.H. Ultrafine Aerosol Measurement Using a Condensation Nucleus Counter With Pulse Height Analysis; Aerosol. Sci. Technol. 1996, 25, 200-213.
Chen, D.R.; Pui, D.Y.H., Hummes, D.; Fissan, H.; Quant, F.R.; Sem, G.J. Design and Evaluation of a Nanometer Aerosol Differential Mobility Analyzer (Nano-DMA); J. Aerosol. Sci. 1998, 29, 497-509
Chen, D.R.; Pui, D.Y.H.A. High Efficiency, High Throughput Unipolar Aerosol Charger for Nanoparticles; J. Nanoparticle Res. 1999, 1, 115-126
McMurry, P.H.; Woo, K.S. Size Distributions of 3–100-nm Urban Atlanta Aerosols: Measurement and Observations; J. Aerosol Med. Deposition Clear. Effects Lung 2002, 15, 169-178.
Stanier, C.O.; Khlystov, A.Y.; Pandis, S.N. Ambient Aerosol Size Distributions and Number Concentrations Measured During the Pittsburgh air Quality Study (PAQS); Atmos. Environ. 2004, 38, 3275-3284.
Hussein, T.; Puustinen, A.; Aalto, P.P.; Makela, J.M.; Hameri, K.; Kulmala, M. Urban Aerosol Number Size Distributions; Atmos. Chem. Phys. 2004, 4, 391-411.
Birmili, W.; Wiedensohler, A. The Influence of Meteorological Parameters on Ultrafine Particle Production at a Continental Site; J. Aerosol. Sci. 1998, 29, S1015-S1016.
Covert, D.S.; Wiedensohler, A.; Aalto, P.; Heintzenberg, J.; McMurry, P.H.; Leck, C. Aerosol Number Size Distributions From 3 to 500 nm Diameter in the Arctic Marine Boundary Layer During Summer and Autumn; Tellus Series B-Chem. Phys. Meteorol. 1996, 48, 197-212.
Tunved, P.; Hansson, H.C.; Kulmala, M.; Aalto, P.; Viisanen, Y.; Karlsson, H.; Kristensson, A.; Swietlicki, E.; Dal Maso, M.; Strom, J.; Komppula, M. one Year Boundary Layer Aerosol Size Distribution Data From Five Nordic Background Stations; Atmos. Chem. Phys. 2003, 3, 2183-2205.
Park, J.; Sakurai, H.; Vollmers, K.; McMurry, P.H. Aerosol Size Distributions Measured at the South Pole During ISCAT; Atmos. Environ. 2004, 38, 5493-5500.
Covert, D.S.; Kapustin, V.N.; Bates, T.S.; Quinn, P.K. Physical Properties of Marine Boundary Layer Aerosol Particles of the mid-Pacific in Relation to Sources and Meteorological Transport; J. Geophys. Res. Atmos. 1996, 101, 6919-6930.
Weber, R.J.; Marti, J.J.; McMurry, P.H.; Eisele, F.L.; Tanner, D.J.; Jefferson, A. Measurements of New Particle Formation and Ultrafine Particle Growth Rates at a Clean Continental Site; J. Geophys. Res. Atmos. 1997, 102, 4375-4385.
Wiedensohler, A.; Hansson, H.C.; Orsini, D.; Wendisch, M.; Wagner, F.; Bower, K.N.; Chourlarton, T.W.; Wells, M.; Parkin, M.; Acker, K.; Wieprecht, W.; Facchini, M.C.; Lind, J.A.; Fuzzi, S.; Arends, B.G.; Kulmala, M. Night-Time Formation and Occurrence of New Particles Associated With Orographic Clouds; Atmos. Environ. 1997, 31, 254
Panatarotto D, Prtidos CD, Hoebeke J, Brown F, Kramer E, Briand JP, Muller S, Prato M, Bianco A: Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chemistry&Biology. 2003, 10: 961-966
Mah C, Zolotukhin I, Fraites TJ, Dobson J, Batich C, Byrne BJ: Microsphere-mediated delivery of recombinant AAV vectors in vitro and in vivo. Mol Therapy. 2000, 1: S239-10.1006/mthe.2000.0174.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.